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Accurate yet simple methods for tra�c engineering are important for e�cient

management of resources in broadband networks. The goal of this paper is to apply

and evaluate large deviation techniques for tra�c engineering. In particular, we

employ the recently developed theory of e�ective bandwidths, where the e�ective

bandwidth depends not only on the statistical characteristics of the tra�c stream,

but also on a link's operating point through two parameters, the space and time pa-

rameters, which can be computed using the many sources asymptotic. We show that

this e�ective bandwidth de�nition can accurately quantify resource usage. Further-

more, we estimate and interpret values of the space and time parameters for various

mixes of real tra�c demonstrating how these values can be used to clarify the e�ects

on the link performance of the time scales of tra�c burstiness, of the link resources

(capacity and bu�er), and of tra�c control mechanisms such as tra�c shaping. Our

experiments involve a large set of MPEG-1 compressed video and Internet Wide

Area Network (WAN) traces, as well as modeled voice tra�c.

Keywords: tra�c engineering, large deviations, many sources asymptotic, e�ective

bandwidths, time scales, broadband networks

1. Introduction

The rapid progress and successful penetration of broadband communications

in the recent years has led to important new problems in tra�c modeling and

engineering. Among others, call acceptance control and network dimensioning for

cases of guaranteed QoS have attracted the attention of researchers. Successful

approaches are closely related to the ability of quantifying the usage of resources

on the basis of tra�c modeling and measurements.

� This work was supported in part by the European Commission under ACTS Project

CASHMAN (AC-039). A subset of this paper has appeared in Proceedings of ACM

SIGMETRICS'98/PERFORMANCE'98, June 1998. The software used for the experiments

and other related material are available at URL: http://www.ics.forth.gr/netgroup/msa/
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For example, statistical analysis of tra�c measurements [15,18,10] has shown

a self-similar or fractal behavior; such tra�c exhibits long range dependence or

slowly decaying autocorrelation. Although the implications of such long range

dependence is still an open issue (e.g., see [9,11] and the references therein),

recent work [20,11] has shown that these implications can be of secondary im-

portance to the bu�er over
ow probability when the bu�er size is small, which

applies to the case where real time communication is supported. This example

motivates the need for a methodology to understand the impact of the various

time scales of the burstiness of real broadband tra�c on the performance of the

network and on its resource sharing capabilities. In particular, some basic ques-

tions for which the network engineer must provide answers are the following:

How much does the cell loss probability decrease when the link capacity or bu�er

size increases? How does tra�c shaping1 a�ect the multiplexing capability of

a link and the amount of resources used by a bursty source? What is the su�-

cient time granularity of tra�c measurements in order to capture the information

that is important for performance analysis and network dimensioning? What are

the e�ects of the composition of tra�c mix on the multiplexing capability of a

link? Traditional queueing theory, which requires elaborate tra�c models, can-

not answer such questions in the context of large multi-service networks; for such

cases asymptotic methods are more appropriate. In this paper we answer such

questions by applying and evaluating the many sources asymptotic and the ef-

fective bandwidth de�nition based on this asymptotic for real broadband tra�c.

This tra�c consists of MPEG-1 compressed video, Internet Wide Area Network

(WAN) tra�c, and tra�c resulting from modeled voice.

Problems related to resource sharing have often been analyzed using the

notion of e�ective bandwidth, which is a scalar that summarizes resource usage

and which depends on the statistical properties and Quality of Service (QoS)

requirements of a source. E�ective bandwidths are usually derived by means of

asymptotic analysis, which is concerned with how the bu�er over
ow probability

decays as some quantity increases. If this quantity is the size of the bu�er, we

have the large bu�er asymptotic [8,14]. If the bu�er per source and capacity per

source are kept constant, and we are interested in how the over
ow probability

decays as the size of the system (the broadband link and the multiplexed sources)

increases, then we have the many sources asymptotic; this asymptotic regime has

been investigated in [7,2,21].

E�ective bandwidth de�nitions based on the large bu�er asymptotic were

found, in some cases, to be overly conservative or too optimistic [4]. This occurs

because the large bu�er asymptotic does not take into account the gain when

many independent sources are statistically multiplexed together. Hence, in gen-

eral the amount of resource usage depends not only on the statistical properties

1Related work on how tra�c smoothing a�ects the multiplexing capability of a link employing

a guaranteed and renegotiated constant bit rate service model can be found in [22].
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and Quality of Service (QoS) requirements of a source, but also on the statistical

properties of the other tra�c it is multiplexed with and the resources (capacity

and bu�er) of the multiplexing link. Only recently [13,6] has it been understood

how to incorporate such information into the de�nition of the e�ective band-

width. These works have shown that the e�ective bandwidth of a source depends

on the link's operating point through two parameters, the space and time param-

eters, which in turn depend on the link resources and the statistical properties of

the multiplexed tra�c. The space and time parameters can be computed using

the many sources asymptotic and, as we will demonstrate with real broadband

tra�c, have important applications to tra�c engineering. Furthermore, since

the e�ective bandwidth gives the amount of resources that must be reserved for

the source in order to satisfy its QoS requirements, it helps simplify problems in

resource management and network dimensioning.

The rest of this paper is structured as follows. In Section 2 we review basic

results from the theory of e�ective bandwidths, as developed in [13], and many

sources asymptotic [7,2,21], and we discuss the application of this framework

to tra�c engineering, giving emphasis on the interpretation of the space and

time parameters. In Section 3 we present a detailed series of experiments which

aim to evaluate the accuracy of the above framework for link capacities and

bu�er sizes that will appear in broadband networks and for real broadband tra�c

which consists of MPEG-1 compressed video and Internet WAN traces, as well

as modeled voice tra�c. Finally, in Section 4 we summarize the results of the

paper and identify areas for future research.

2. The many sources asymptotic and its implications

In this section we summarize the key results of the many sources asymptotic

and the related e�ective bandwidth de�nition, and discuss their implications for

tra�c engineering.

2.1. E�ective bandwidths and the many sources asymptotic

Suppose the arrival process at a broadband link is the superposition of in-

dependent sources of J types. Let N
j
= Nn

j
be the number of sources of type

j, and let n = (n1; : : : ; nJ) (the njs are not necessarily integers). The broadband

link has a shared bu�er of size B = Nb and link capacity C = Nc. Parameter N

is the scaling parameter (size of the system), and parameters b; c are the bu�er

and capacity per source, respectively. We suppose that after taking into account

all economic factors (such as demand and competition) the proportions of tra�c

of each of the J types remains close to that given by the vector n, and we seek

to understand the relative usage of network resources that should be attributed

to each tra�c type.
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Let X
j
[0; t] be the total load produced by a source of type j in the time

interval [0; t), which feeds the above link. We assume that X
j
[0; t] has stationary

increments. Then, the e�ective bandwidth of a source of type j is de�ned as [13]

�
j
(s; t) =

1

st
logE

h
esXj [0;t]

i
; (1)

where s; t are system parameters which are de�ned by the context of the source,

i.e., the characteristics of the multiplexed tra�c, their QoS requirements, and

the link resources (capacity and bu�er). Speci�cally (these interpretations follow

from equation (2) below), the time parameter t (measured in, e.g., milliseconds)

corresponds to the most probable duration of the bu�er busy period prior to

over
ow. The space parameter s (measured in, e.g., kb�1) is an indication of

the degree of multiplexing and depends, among others, on the size of the peak

rates of the multiplexed sources relative to the link capacity. In particular, for

link capacities much larger than the peak rates of the multiplexed sources, s

tends to zero and �
j
(s; t) approaches the mean rate of the source, while for link

capacities not much larger than the peak rates of the sources, s is large and

�
j
(s; t) approaches the maximum value of the random variable X

j
[0; t]=t.

Let Q(Nc;Nb;Nn) = P (over
ow) be the probability that in an in�nite

bu�er which multiplexes Nn = (Nn1; : : : ; Nn
J
) sources and is served at rate

C = Nc, the queue length is above the threshold B = Nb. The following result,

established in [7], holds for Q(Nc;Nb;Nn):

lim
N!1

1

N
logQ(Nc;Nb;Nn) = sup

t

inf
s

2
4st

JX
j=1

n
j
�
j
(s; t)� s(b+ ct)

3
5 = �I ; (2)

where I is called the asymptotic rate function. The last equation is referred to

as the many sources asymptotic, and has been proved for continuous time in [2]

and for a special case in [21]. A similar asymptotic holds for the proportion of

workload lost through the over
ow of a �nite bu�er of size Nb. Due to equation

(2), the over
ow probability can be written as P (over
ow) = e�NI+o(N), which

leads to the following approximation when N is large:

P (over
ow) � e�NI : (3)

The accuracy of the above approximation and, more importantly, the achievable

link utilization for real broadband tra�c are investigated in Section 3.2.

Consider the QoS constraint on the over
ow probability to be P (over
ow) �
e�
 , and assume 
 = N
0. Let A(N
0; Nc;Nb) be a subset of ZJ

+ such

that (Nn1; : : : ; Nn
J
) 2 A(N
0; Nc;Nb) implies logP (over
ow) � �N
0 (and

vice versa), i.e., the QoS constraint on the over
ow probability is met. Due

to this property, A(N
0; Nc;Nb) is called the acceptance region. The region
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A(N
0; Nc;Nb) is hard to compute. However, for the scaled acceptance region

the following holds [13]:

lim
N!1

A(N
0; Nc;Nb)

N
= A ;

where

A =
\

0<t<1

A
t
; (4)

A
t
=

8<
:(n1; : : : ; nJ) : infs

2
4st

JX
j=1

n
j
�
j
(s; t)� s(b+ ct)

3
5 � �
0

9=
; :

Hence, the scaled acceptance region A(N
0; Nc;Nb)=N , for large N , can be

approximated by A.

If (n1; : : : ; nJ) is on the boundary of the region A and the boundary is

di�erentiable at that point, then the tangent plane determines the half-space [13]

JX
j=1

n
j
�
j
(s; t) � c+

1

t

�
b�


0

s

�
= c� ; (5)

where (s; t) is an extremizing pair in equation (2) and c� is the \e�ective capacity"

per source at the operating point (s; t). The case for two source types (J = 2) is

shown in Figure 1.

the scaled acceptance region

Approximation A of

At2

At3

At1

(s; t)

n1

n1�1(s; t) + n2�2(s; t) = c�

n2

Figure 1. Approximation A of the scaled acceptance region
A(N
0;Nc;Nb)

N
for three values of t.
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To the extent that A(N
0; Nc;Nb) can be approximated by NA, it follows

from (5) that a point (N1; : : : ; NJ
) = (Nn1; : : : ; Nn

j
) 2 A(N
0; Nc;Nb) can be

taken to satisfy

JX
j=1

N
j
�
j
(s; t) � C +

1

t

�
B �




s

�
= C� ; (6)

where, as in (5), (s; t) is an extremizing pair in equation (2) and C� is the \e�ec-

tive capacity" of the system at the operating point (s; t).

According to (6), the e�ective bandwidth �
j
(s; t) provides a relative measure

of resource usage for a particular operating point of the link, expressed through

parameters s; t. For example, if a source of type j1 has twice as much e�ective

bandwidth as a source of type j2, then, for this particular operating point of the

link, one source of the �rst type can be substituted for two sources of the second

type, while still satisfying the QoS constraint. The above measure of resource

usage di�ers from the ordinary measure that is usually reported (i.e., the mean

rate), which corresponds to s = 0. Note that the QoS guarantees are encoded

in the e�ective bandwidth de�nition through the value of 
 that appears on the

right hand side of (6) and in
uences the form of the acceptance region.

Unlike the e�ective bandwidth de�nition (1) which takes into account the

e�ects of statistical multiplexing, the e�ective bandwidth based on the large

bu�er asymptotic depends solely on the characteristics of the source and the QoS

constraint. Speci�cally, [8,14] consider the QoS constraint P (over
ow) � e��B ,

where B is the total bu�er. In this case the e�ective bandwidth based on the

large bu�er asymptotic of a source of type j and the corresponding constraint is

�
j
(s) =

1

s
lim
t!1

1

t
logE

h
esXj [0;t]

i
; (7)

JX
j=1

N
j
�
j
(�) � C :

Observe that (7) is a special case of (1) for t ! 1. Indeed, the e�ective band-

width formula (7) gives an accurate measure of resource usage when the link

bu�er is large, in which case the time parameter t (which is related to the time

for bu�er over
ow) becomes large. However, for �nite bu�er sizes equation (7)

can lead to signi�cant underutilization or even overutilization of link capacity [4].

Section 3 includes experiments that compare the performance of the large bu�er

asymptotic with that of the many sources asymptotic.

2.2. The Bahadur-Rao improvement

In this section we discuss an improvement of (3), due to [16], that is based

on the Bahadur-Rao theorem. Similar ideas were introduced as heuristics in

[12,17]. Then we derive an e�ective bandwidth constraint similar to (6) that takes
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into account this improvement. An important result is that both the e�ective

bandwidth formula (1) and the computation of parameters s; t remain the same;

the latter uses the supinf formula (2).

Recently the authors of [16] extended the proof of the many sources asymp-

totic in [7] to show that as N !1

P (over
ow) =
1

p
2�N�2s2

e�NI

�
1 +O

�
1

N

��
; (8)

where (s; t) is an extremizing pair of (2) and �2 is given by

�2 =
@2

@s2
logE

h
esXj [0;t]

i
=
M 00(s)

M(s)
� (ct+ b)2 ;

where M(s) = E
h
esXj [0;t]

i
is the moment generating function of the tra�c pro-

cess. Based on (8), we have the following approximation:

P (over
ow) �
1

p
2�N�2s2

e�NI = e�NI�
1
2
log(2�N�

2
s
2) : (9)

We will refer to the above equation as the many sources asymptotic approxi-

mation with the Bahadur-Rao improvement. The term 1

2
log(2�N�2s2) can be

approximated by 1

2
log(4�NI) [17]. Hence, equation (9) does not require any

additional computations compared to (3).

Next, we derive the e�ective bandwidth constraint similar to (6) applicable

with the Bahadur-Rao improvement (9). If the number of sources of each type

Nn = (N1; : : : ; NJ
) is such that the over
ow probability given by (9) is equal to

the target over
ow probability e�
 , then we have

�NI �
1

2
log(2�N�2s2) = �
 :

Substituting 1

2
log(2�N�2s2) with 1

2
log(4�NI) in this equation gives

�NI �
1

2
log(4�NI) = �
 , NI = 
 �

1

2
log(4�NI) :

By setting NI = 
 + � in the last equation and taking the expansion of the

logarithm on the right-hand side, i.e., log(4�NI) = log (4�(
 + �)) � log 4(�
) +

�=
, we obtain


+ � � 
�
1

2
log(4�
)�

1

2

�,

�
1 +

1

2


�
� � �

1

2
log(4�
), � � �

1

2
log(4�
)

1 + 1

2


:

Substituting the last equation in NI = 
 + � gives

NI � 
 �
1

2
log(4�
)

1 + 1

2


= 
0 :
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Combining the last equation with (2) gives the following e�ective bandwidth

constraint in the neighborhood of the extremizing pair (s; t) of (2)

JX
j=1

N
j
�
j
(s; t) � C +

1

t

�
B �


0

s

�
= C�B-R : (10)

It is important to note that the same formula for the e�ective bandwidth, given by

equation (1), is used in both (6) and (10), with the parameters s; t computed using

the same formula (2). The Bahadur-Rao improvement only a�ects (increases) the

amount of e�ective capacity C�
B-R

> C�.

2.3. Implications to tra�c engineering

Next we discuss the interpretation of the space and time parameters s; t,

and how they can be used for tra�c engineering.

For any tra�c stream, the e�ective bandwidth �
j
(s; t) in (1) is a template

that must be �lled with the system operating point parameters s; t in order to

provide the correct measure of e�ective usage by a source for that particular

operating point. Although the value of this operating point also depends on this

individual source, for a large system, due to heavy multiplexing, this dependence

can be ignored. Such an engineering approach simpli�es considerably the analysis

because there is no circle in the de�nitions of the e�ective bandwidth and the

operating point. Indeed, as we will see in Section 3.4, the values of s; t are, to

a large extent, insensitive to small variations of the tra�c mix. Furthermore, it

has been observed that in networks serving a large number of sources, the tra�c

mix exhibits strong cyclic behavior. Hence, we can assign particular pairs (s; t)

to periods of the day during which the tra�c mix remains relatively constant.

The values of s; t for a particular period of the day can be computed o�-line

from tra�c measurements taken during that period using the supinf formula

(2) and the e�ective bandwidth formula (1); this procedure is discussed in detail

in Section 3.1. Alternatively, the parameters s; t can be estimated using their

interpretation, which we discuss next (related experimental results are presented

in Section 3.3.1).

Recall that the time parameter t corresponds to the most probable duration

of the bu�er busy period prior to over
ow. We now argue that this parameter

also identi�es the time scales that are important for bu�er over
ow. Assume that

a link is operating at a particular operating point, expressed through parameters

s; t. In the e�ective bandwidth formula (1) the statistical properties of the source

appear in X
j
[0; t], which is the amount of workload produced by the source in

an interval of length t. If two sources have the same distribution of X
j
[0; t] for

this value of t, then they will both have the same e�ective bandwidth. A case

of practical interest where this result can be applied is tra�c smoothing: To

have an e�ect on the amount of resources used by a source, tra�c smoothing

must be performed on a time scale larger than t, since only then does it a�ect
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the distribution of X
j
[0; t]. We investigate this with real broadband tra�c in

Section 3.4.3. Based on the above discussion, the time parameter t also indicates

the time granularity that tra�c measurements must have, since given a value for t

it would be su�cient to measure tra�c in intervals with length a few times smaller

than this value. Traditionally, the time granularity of tra�c measurements was

chosen in a rather ad-hoc manner.

Next we discuss the interpretation of the parameter s and the product st.

Let 
 = � logP (over
ow). Combining this with (2) we have 
 = sup
t
inf

s
[s(b +

ct)� st
P

J

j=1 nj�j(s; t)]. Taking the derivative of the last equation (see also [6])

we obtain

s =
@


@B
and st =

@


@C
: (11)

Thus, the parameter s is equal to the rate at which the logarithm of the over-


ow probability decreases with the bu�er size for �xed capacity. On the other

hand, the product st is equal to the rate at which the logarithm of the over
ow

probability decreases with the link capacity for �xed bu�er size.

3. Multiplexing experiments

In this section we apply and evaluate for real broadband tra�c the perfor-

mance analysis framework discussed in Section 2. The speci�c issues we address

are the following:

� Procedure for numerically solving the supinf formula (2). (Section 3.1)

� Comparison of the over
ow probability and link utilization using the many

sources asymptotic and its Bahadur-Rao improvement to the actual cell loss

probability and maximum utilization estimated using simulation. (Section 3.2)

� Comparison of the values of the space and time parameters s; t computed by

theory to the values estimated using simulation. (Section 3.3)

� Estimation and interpretation of typical values of parameters s; t for real

broadband tra�c. (Section 3.3)

� Investigation of how the values of parameters s; t, and subsequently the e�ec-

tive bandwidth, depend on the tra�c mix. (Section 3.4)

Our experiments involve real broadband tra�c, namely MPEG-1 compressed

video and Internet WAN traces, as well as modeled voice tra�c. The MPEG-1

sequences, made available2 by O. Rose [19], were encoded using the UC Berkeley

MPEG-1 software encoder with frame pattern IBBPBBPBBPBB. Each sequence

consists of 40,000 frames (approximately 30 minutes). For Internet WAN tra�c

we use the Bellcore Ethernet trace BC-Oct89Ext made available3 by W. Leland

2Available at URL: ftp://ftp-info3.informatik.uni-wuerzburg.de/pub/MPEG/
3Available from The Internet Tra�c Archive at URL: http://www.acm.org/sigcomm/ITA/
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and D. Wilson [15]. The duration of the trace is 122797.83 seconds. For voice

tra�c we use an on-o� Markov 
uid model with peak rate 64 kbps and average

time spent in the \on" and \o�" states 352 msec and 650 msec, respectively

[3]. Finally, we consider link capacities 34; 155; and 622 Mbps, and bu�ers with

maximum queueing delay up to 50 msec for MPEG-1 tra�c, and up to 150 msec

for Internet tra�c.

3.1. Numerical solution of the supinf formula

Next we give some details of how the supinf formula (2) can be numerically

solved in an e�cient manner.4 We assume that the source statistics are available

from measurements of aggregate load (e.g., number of cells) in �xed intervals

(epochs) with duration � . From these measurements the value of X
j
[0; t] can be

computed for values of t that are integer multiples of � .

The supinf formula (2) can be written as

�I = sup
t

inf
s

J(s; t) ; (12)

where

J(s; t) =

2
4st

JX
j=1

n
j
�
j
(s; t)� s(b+ ct)

3
5 :

The expectation in (1) can be approximated by the empirical average. Hence if

T is the total duration of the trace, then

�
j
(s; t) =

1

st
log

2
4 1

T=t

T=tX
i=1

esXj [(i�1)t;it]

3
5 : (13)

Solution of equation (12) involves two optimization procedures: the �rst con-

sists of �nding, for a �xed value t, the minimum J�(t) = min
s
J(s; t) and

s = argmin
s
J(s; t), whereas the second consists of �nding the maximum �I =

max
t
J�(t) and t = argmax

t
J�(t).

The minimization J�(t) = min
s
J(s; t) can be numerically solved in an ef-

�cient manner by taking into account the fact that the logarithmic moment

generating function st�
j
(s; t) = logE[esXj [0;t]] is convex in s. Due to this,

J(s; t) is a unimodal function of s and the minimizer is unique. Hence, to �nd

J�(t) = min
s
J(s; t) one can start from an initial \uncertainty" interval [s

a
; s

b
]

that contains the minimum (this interval can be found heuristically), and decrease

the uncertainty interval using a golden section search. The procedure stops when

the uncertainty interval has length less than some small value �.

Unlike the previous minimization procedure, there is no general property

for J�(t) that we can take advantage of in order to perform the maximization

4 Software is available at URL: http://www.ics.forth.gr/netgroup/msa/
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�I = max
t
J�(t) in an e�cient manner.5 For this reason, the maximization is

solved by linearly searching the values of t in the interval [0; �� ] with granularity

equal to one epoch � . The value of � is determined empirically and depends on the

bu�er size: the extremizing value of t is larger for larger bu�er sizes. Indeed, the

experimental results in Section 3.3.1 show that the values of the time parameter

t found using this procedure are in good agreement with the interpretation given

by the theory, thus validating the correctness of the above procedure.

The run-time required for numerically solving the supinf formula (12) de-

pends primarily on the size (number of epochs) of the trace �le and the range

of values of t that are linearly searched. On the other hand, it does not depend

on the number of multiplexed streams. For example, when the trace �les contain

40,000 epochs and 50 values of t are searched6, the solution of the supinf for-

mula requires approximately 23 seconds on an ULTRA-1 workstation with one

UltraSPARC processor at 170 MHz.

3.2. Over
ow probability and link utilization

In this section we compare the over
ow probability and link utilization using

the many sources asymptotic and its Bahadur-Rao improvement to the actual cell

loss probability and maximum utilization estimated using simulation. We also

derive a simple heuristic for computing the actual cell loss probability from the

over
ow probability.

3.2.1. Over
ow probability

Figure 2 compares, for a �xed number of streams, the over
ow probability

estimated using the many sources asymptotic and its Bahadur-Rao improvement

with the cell loss probability and frame over
ow probability estimated using sim-

ulation; the latter is the probability that at least one cell of a frame is lost.

Both the cell loss probability and the frame over
ow probability are measured

using a discrete time simulation model with an epoch equal to one frame time

(= 40 msec). In these and subsequent simulations we report the average from a

total of 80 independent simulation runs, each with a random selection of the start-

ing frame for every stream. Each simulation run had duration �ve times the size

of the trace. We assume that frame boundaries are aligned and for each stream

the trace \wraps around" when the last frame is reached. Both the number of

runs and the duration of each run were chosen empirically.

For each method, the decimal logarithm of the over
ow probability is plot-

ted against the bu�er size (measured in milliseconds), while the link utilization

remains constant.

5 Furthermore, experimentation has shown that J�(t) can have more than one local minima.
6 This range of t is typical for the case of MPEG-1 tra�c with frame time 40 msec, when

C = 155 Mbps and the maximum queueing delay in the bu�er is less than 15 msec.
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In Figure 2, �rst observe that for small bu�er sizes there is a relatively fast

decrease of the over
ow probability as the bu�er size increases. However, this

occurs only for bu�er sizes up to some value, e.g., 5�8 msec for a 155 Mbps link;

further increase of the bu�er above this value has a small e�ect on the over
ow

probability. Furthermore, the logarithm of the over
ow probability in both of

these regimes is almost linear with the bu�er size.

Second, observe that although the many sources asymptotic overestimates

the Cell Loss Probability (CLP) by approximately 2-3 orders of magnitude, it

qualitatively tracks its shape very well. Furthermore, the Bahadur-Rao improve-

ment overestimates the CLP by 1-2 orders of magnitude. On the other hand, the

large bu�er asymptotic, in addition to overestimating the CLP by many orders

of magnitude, also fails to track its shape.

The actual cell loss probability di�ers from the over
ow probability esti-

mated using the many sources asymptotic and its Bahadur-Rao improvement

because the latter is a measure of the probability that in an in�nite bu�er the

queue length becomes greater than B, rather than a measure of the CLP. The

de�nition of the bu�er over
ow probability is closer in spirit to that of the frame

over
ow probability (the probability that at least one cell of a frame is lost).

Indeed, as Figure 2 shows, the over
ow probability estimated using the many

sources asymptotic with the Bahadur-Rao improvement is very close to the frame

over
ow probability. This is the case because the simulation epoch is equal to

the frame time.

To further explain the above, we derive a simple expression for the cell loss

probability in terms of the frame over
ow probability Lf. If one observes a large

number of frames, sayM , the average number of frames in which we have at least

one lost cell is MLf. Let x be the average number of cells that are lost when a

frame over
ow occurs. The average number of cells that are lost in M frames is

MLfx from a total ofMF , where F is the average number of cells in a frame. We

can approximate the cell loss probability with the percentage of lost cells, i.e.,

CLP �
MLfx

MF
=

x

F
Lf : (14)

From the last equation we see that the cell loss probability di�ers from the frame

over
ow probability by a correction term Lc = x=F . Lets assume that when

an over
ow occurs only a few cells are lost. This is reasonable to expect for

small cell loss probabilities, since the probability of loosing cells in a bu�er of

size B + � is exponentially smaller than loosing cells in a bu�er of size B. In

particular, we will assume that only one cell is lost, hence Lc � 1=F , and since

the average number of cells in one frame is 25 we get Lc � 1=25 = 10�1:4. This

number agrees with the di�erence between the frame over
ow probability and

the cell loss probability shown in Figure 2. Indeed, Figure 3 shows the cell loss

probability estimated using (14), where Lc = 10�1:4. Observe that the cell loss
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probability using the above heuristic matches the cell loss probability estimated

using simulation extremely well.

3.2.2. Link utilization

Let % = Nm=C be the link utilization, where N is the number of streams,

m is the mean rate, and C is the link capacity. Figure 4 compares, for a range

of bu�er sizes and for over
ow probability 10�6, the link utilization using the

many sources asymptotic and its Bahadur-Rao improvement with the maximum

achievable utilization (estimated using simulation). The utilization is computed

by �nding the largest number of multiplexed streams such that the over
ow

probability (3), computed using (12) and (13), is less than the target over
ow

probability 10�6. This is done using a binary search for values of N in the interval

[Nmin; Nmax] with Nmin = C=h and Nmax = C=m, where h is the peak rate of the

streams. For the many sources asymptotic with the Bahadur-Rao improvement,

(9) is used instead of (3).

Similar to our observations regarding the over
ow probability, there are sig-

ni�cant gains in increasing the size of the bu�er up to a certain value. Increasing

the bu�er size above this value has a very small e�ect on link utilization.

Recall that the many sources asymptotic overestimated the CLP by 2-3

orders of magnitude. However, as Table 1 shows, it is more accurate in estimating

the maximum utilization. In particular, for C = 34 Mbps and B = 1 msec the

many sources asymptotic achieves a utilization that is approximately 79% of the

maximum utilization. The Bahadur-Rao improvement increases this percentage

to 88%. Furthermore, this percentage increases for larger link capacities; e.g.,

for C = 155 Mbps and B = 1 msec the many sources asymptotic achieves a

utilization that is 90% of the maximum utilization (Table 1(b)). Of course, as

Figure 5 shows, using the heuristic based on (14) we achieve a utilization that

almost coincides with the maximum utilization.

Finally, Figure 6 shows the link utilization in the case of Internet WAN

tra�c. Observe that while for Star Wars tra�c the gains of increasing the bu�er

decrease abruptly, for Internet WAN tra�c the gains of increasing the bu�er

decrease more smoothly as the bu�er size increases. This indicates that there are

more time scales in Internet tra�c which, if not smoothed, become important for

bu�er over
ow, for di�erent bu�er sizes.

3.3. Space and time parameters

The space and time parameters s; t characterize a link's operating point and

depend on the characteristics of the multiplexed tra�c and the link resources.

In this section we compare the values of these parameters computed using the

supinf formula (12) to the corresponding values estimated using simulation. Fur-

thermore, we compute and interpret typical values for these parameters, demon-

strating how they can be used for tra�c engineering.
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Table 1

Link utilization for Star Wars tra�c and target over
ow probability 10�6. The numbers in

parentheses indicate the percentage of the maximum utilization (second column).

Bu�er Utilization %

msec (cells) Simulation Many sources Many sources + B-R

1 (80) 0.57 0.46 (79 %) 0.52 (88 %)

8 (641) 0.70 0.59 (84 %) 0.64 (91 %)

16 (1282) 0.81 0.71 (88 %) 0.77 (96 %)

(a) C = 34 Mbps

Bu�er Utilization %

msec (cells) Simulation Many sources Many sources + B-R

1 (365) 0.82 0.74 (90 %) 0.76 (94 %)

8 (2924) 0.92 0.88 (96 %) 0.89 (97 %)

16 (5849) 0.92 0.89 (97 %) 0.90 (98 %)

(b) C = 155 Mbps

3.3.1. Space and time parameters: theory vs. simulation

Recall from Section 2.3 that the space parameter s is equal to the rate at

which the logarithm of the over
ow probability decreases with the bu�er size,

equation (11). Motivated by this, we can estimate s using the ratio

s =
�


�B
; (15)

with 
 estimated from � log(CLPsim), where CLPsim is the cell loss probability

estimated using simulation. Figure 7(a) shows that the values of parameter s

computed using the supinf formula (12) are in good agreement with the values

estimated using (15).

As discussed in Section 2.1, the time parameter t can be interpreted as the

most probable duration of the bu�er busy period prior to over
ow. Figure 7(b)

compares the value of parameter t computed using the supinf formula to the

average value of the bu�er busy period prior to over
ow. As was the case for

parameter s, the agreement between the two curves is good.

Note that the \steps" in the curves of s; t computed using the supinf formula

are expected since the many sources asymptotic (and large deviations theory in

general) captures only the most likely way over
ow can occur. On the other hand,

the curves labeled \simulation" in Figures 7(a) and 7(b) represent an average over

all events that contribute to over
ow.
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Additional experimentation with other tra�c types (Internet and video-

conference tra�c) has con�rmed the above results.

3.3.2. Typical values and interpretation of the space and time parameters

Next we investigate how parameters s; t and the product st depend on the

link capacity and bu�er size. The values of s; t are computed using the supinf

formula for a target over
ow probability 10�7.

Figure 8 shows the parameter s as a function of the bu�er size, for various

link capacities (Figure 8(a)) and video contents (Figure 8(b)). Observe that,

initially, s decreases slowly with the bu�er size. According to equation (11), s is

equal to the rate at which the logarithm of the cell loss probability decreases as the

bu�er size increases. Hence, for larger bu�ers, where statistical multiplexing is

more e�cient, increasing the bu�er has a smaller e�ect on the cell loss probability.

The explanation of the steep decrease of s in Figure 8(a) is similar to the

explanation of the \knee" of the curves in Figures 2 and 4. Up to some value, the

bu�er's e�ect is to smooth the fast time scales of the multiplexed tra�c. Thus,

increasing the bu�er has a large e�ect on the over
ow probability, and the value

of s is high. Once the fast time scales have been smoothed, the slow time scales

govern the bu�er over
ow. Thus, increasing the bu�er has a very small e�ect on

the over
ow probability, and the value of s is small. Also, observe in Figure 8(a)

that the steep decrease of the value of s occurs for smaller bu�er sizes (measured

in milliseconds) as the link capacity increases. Finally, see Figure 8(b), similar

behavior is observed for MPEG-1 tra�c with various contents. This indicates

that the above behavior of s is due to the MPEG-1 frame structure.

The dependence of parameter t on the bu�er size is shown in Figure 9(a).

Observe that the steep increases of t occur for the same bu�er sizes for which s

decreases (Figure 8(a)). Small values of t correspond to the regime where fast

time scales are important for bu�er over
ow, whereas large values of t correspond

to the regime where slow time scales are important for bu�er over
ow.

The product st as a function of the bu�er size is shown in Figure 9(b). The

initial slow decrease of st as the bu�er increases occurs while t remains constant,

and is due to the slow decrease of s (see Figure 8(a)). Furthermore, there is a

steep increase of st, which occurs for the same bu�er sizes for which the changes

of s; t occur. The explanation for this steep increase of st is more subtle than the

explanation for the behavior of s; t. Recall from Section 2.3 that st is equal to the

rate at which the logarithm of the over
ow probability decreases with the link

capacity, for �xed bu�er size, equation (11). Comparing Figures 9(a) and 9(b), we

observe that the larger values of st correspond to larger values of t. Larger values

of t result in an averaging e�ect in the amount of workload X
j
[0; t] that appears

in the e�ective bandwidth formula (1). Hence, for the over
ow phenomenon the

tra�c appears smoother. But for a link that multiplexes smooth tra�c and is

operating with a cell loss probability greater than zero, a change of the capacity

has a greater e�ect on the over
ow probability compared to a link multiplexing
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more bursty tra�c. This gives the intuition of why st increases sharply for some

bu�er sizes.

Figure 10 compares the values of s; t for Star Wars and voice tra�c. Fig-

ure 10(a) shows that as the bu�er size increases, the value of s for voice tra�c

decreases smoothly. Furthermore, the rate of decrease is smaller for larger bu�er

sizes. Comparing the value of s for MPEG-1 and voice tra�c, we conclude that,

for bu�er sizes up to 2 msec and above 10 msec, increasing the bu�er has a

larger e�ect for a network carrying voice tra�c compared to a network carrying

MPEG-1 tra�c. This is an example of how the values of the space parameter

can be used in bu�er dimensioning.

Figure 10(b) shows that the time parameter t for voice tra�c increases

almost linearly with the bu�er size. This can be explained since for a high degree

of multiplexing, voice sources (which are modeled as on-o� Markov 
uids) behave

as Gaussian sources. For such sources, it has been shown in [7] that the time

parameter t increases linearly with the bu�er size.

Figure 11(a) compares parameter s for Star Wars and Internet WAN tra�c.

For MPEG-1 tra�c, the values of s form two distinct regimes corresponding to

the two distinct time scales that are important for bu�er over
ow. On the other

hand, for Internet tra�c the values of s form more than two regimes, indicating

that for such tra�c there are more time scales which, for di�erent bu�er sizes,

become important for bu�er over
ow. Recall that this is also the reason for the

smoother dependence of the link utilization on the bu�er size for Internet tra�c

compared to Star Wars tra�c (Figure 6). Finally, Figure 11(b) shows that s can

have di�erent values for di�erent Internet tra�c segments from the same source,

illustrating that di�erent such segments have di�erent statistical properties.

3.4. E�ects of the tra�c mix

As discussed in Section 2.1, periods of the day during which the tra�c mix

remains relatively constant can be characterized by particular pairs (s; t). In this

section we investigate the dependence of these parameters, hence of the e�ective

bandwidth, on the tra�c mix. The tra�c mix we consider consists either of tra�c

of di�erent type (MPEG-1 video and voice), or of tra�c with the same structure

but di�erent content (MPEG-1 video with di�erent content), or of smoothed and

unsmoothed tra�c of the same type and content.

3.4.1. Tra�c mix containing Star Wars and voice tra�c

We �rst consider the tra�c mix containing Star Wars and voice tra�c. The

horizontal axis in Figures 12(a) and 12(b) depicts the percentage of voice con-

nections, each containing 30 individual voice channels. The vertical axis depicts

the e�ective bandwidth of the Star Wars tra�c stream. Observe that (1) the

e�ective bandwidth, to a large extent, changes slowly with the tra�c mix, (2) the

dependence of the e�ective bandwidth on the tra�c mix is smaller for larger ca-
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pacities and bu�er sizes, and (3) there are cases where increasing the percentage

of voice connections leads to a sharp decrease of the e�ective bandwidth.

The �rst observation supports the argument that particular pairs (s; t) can

be assigned to periods of the day during which the tra�c mix remains relatively

constant. However, the third observation states that there are certain percentages

of the tra�c mix where the e�ective bandwidth exhibits sharp changes. If the

link's operating point is close to such a percentage, then we can estimate the

average amount of resources used by a stream as a weighted sum of the e�ective

bandwidth to the left and to the right of the sharp change. The weights would

be determined by the percentage of the time the network was operating on the

left and on the right of the change.

The sharp decrease of the e�ective bandwidth identi�ed above is due to the

change of the time scales that are important for bu�er over
ow. In particular, as

indicated in Figure 12(a) above the curve for C = 155 Mbps and bu�er 4 msec,

the time parameter t increases (1, 4, and 7 frames) for the same percentage

of voice connection at which the sharp decrease of the value of the e�ective

bandwidth occurs. The increase of t produces an averaging e�ect (also discussed

in Section 3.3.2) in the amount of workload X
j
[0; t] that appears in the e�ective

bandwidth formula (1); this averaging results in a smaller e�ective bandwidth.

3.4.2. Tra�c mix containing MPEG-1 tra�c with di�erent content

Our previous investigations addressed the case where the tra�c mix consists

of tra�c with di�erent structure. Now we investigate the case where the tra�c

mix consists of MPEG-1 video tra�c with the same encoding parameters but with

di�erent content. Figures 13(a) and 13(b) show the e�ective bandwidth of the

Star Wars stream as a function of the percentage of news and talk show streams,

respectively. These �gures show that the content has a very small e�ect on the

e�ective bandwidth; this implies that the e�ects of the content on parameters s; t

are also very small.

3.4.3. Tra�c mix containing smoothed and unsmoothed Star Wars tra�c

Our �nal investigation deals with another important question in tra�c en-

gineering: How does tra�c smoothing a�ect the multiplexing capability of a link

and the amount of resources used by a tra�c stream? We will see that parameter

t indicates the minimum time scale at which smoothing must be performed in

order for it to a�ect resource usage.

Figure 14 shows the e�ective bandwidth of the Star Wars stream for di�erent

percentages of a tra�c mix of unsmoothed and smoothed Star Wars tra�c;

the latter is created by evenly spacing the cells belonging to two consecutive

frames. Observe that (1) the e�ects of the tra�c mix on the e�ective bandwidth

decrease when the link capacity or bu�er size increases, (2) there are cases where

increasing the bu�er size has a very small e�ect on the e�ective bandwidth, e.g., at

C = 622 Mbps the curves for B = 8 msec and B = 16 msec practically coincide,
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and (3) for some bu�er sizes smoothing a�ects neither the e�ective bandwidth,

nor the link's operating point, e.g., in Figure 14(a) the curve for C = 155 Mbps

and B = 8 msec, and the curves for C = 622 Mbps and B = 4; 8; and 16 msec

are 
at. Next we discuss the third observation in more detail.

Figure 15 shows the e�ective bandwidth for both the smoothed and un-

smoothed Star Wars stream. When the percentage of smoothed tra�c is small,

the time parameter t (= 40 msec) is smaller than the time interval over which

smoothing was performed (80 msec). For this reason, the amount of workload

X
j
[0; t] that appears in the e�ective bandwidth formula (1) is smaller for the

smoothed stream than it is for the unsmoothed stream. Hence, the e�ective

bandwidth of the smoothed stream is smaller than the e�ective bandwidth of

the unsmoothed stream. For some percentage of smoothed tra�c (� 60%), the

time parameter t (= 80 msec) is no longer smaller than the time interval over

which smoothing is performed (80 msec). Because of this, the amount of work-

load X
j
[0; t] is the same for both the smoothed and the unsmoothed streams.

Hence, the e�ective bandwidth of both streams is the same.

4. Conclusions

In this paper we employ the recently developed theory of e�ective band-

widths based on the many sources asymptotic, whereby the e�ective bandwidth

depends not only on the statistical characteristics of the tra�c stream but also

on a link's operating point. The latter is summarized in two parameters: the

space and time parameters.

We have investigated the accuracy of the above framework, and how it can

provide important insight to the complex phenomena that occur at a broadband

link with a high degree of multiplexing. In particular, we have estimated and

interpreted values of the space and time parameters for various mixes of real

tra�c demonstrating how these can be used to clarify the e�ects on the link

performance of the time scales of tra�c burstiness, of the link resources (capacity

and bu�er), and of tra�c control mechanisms such as tra�c smoothing.

Our approach is based on the o�-line analysis of tra�c measurements, the

granularity of which can be determined by the time parameter of the link. For

the tra�c mixes considered, the space and time parameters are, to a large extent,

insensitive to small variations of the tra�c mix. Furthermore, the dependence

decreases for larger link capacities and bu�er sizes. This indicates that particular

pairs of these parameters can characterize periods of the day during which the

tra�c mix remains relatively constant. This result has important implications

to charging, since simple pricing schemes that are linear in time and volume and

have important incentive properties can be created from tangents to bounds of

the e�ective bandwidth [6]. Furthermore, the above result opens up some new

possibilities for tra�c modeling. Rather than developing general models that try
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to emulate real tra�c in any operating environment, a new approach would be to

develop models, parameterized by s; t, that emulate real tra�c for the particular

operating point s; t. Such an approach is taken in [5]. If simple and e�cient to

implement, such models can be the basis for fast and 
exible tra�c generators.

The application of our approach to tra�c engineering and management of

tra�c contracts in a real multi-service network that involves a large number of

di�erent source types is an important area for further research. Speci�c issues

are whether the number of discontinuities of the operating point parameters s; t

increases with the number of source types and how the parameters s; t vary for

di�erent periods of the day. Another important research topic is the analysis of

multiplexers supporting multiple priorities [13,1]. It is interesting to extend our

investigations to this case.
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Figure 2. Over
ow probability: theory vs. simulation for Star Wars tra�c. The

many sources asymptotic tracks the shape of the cell loss probability very well. However, it

overestimates it by 2-3 orders of magnitude. The Bahadur-Rao improvement overestimates the

CLP by 1-2 orders of magnitude. On the other hand, the large bu�er asymptotic, in addition

to overestimating the CLP by many orders of magnitude, also fails to track its shape.
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Figure 3. Over
ow probability using the many sources asymptotic with the Bahadur-

Rao improvement and CLP heuristic (Star Wars tra�c). The many sources asymptotic

with the Bahadur-Rao improvement and CLP heuristic matches the CLP estimated using sim-

ulation extremely well. [ C = 155 Mbps, % = 0:93 ]
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Figure 4. Link utilization: theory vs. simulation for Star Wars tra�c. The many

sources asymptotic with the Bahadur-Rao improvement performs better in utilizing a link than

it does in estimating the cell loss probability (Figure 2). On the other hand, the large bu�er

asymptotic achieves a very low link utilization. [ P (over
ow) � 10�6 ]
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Figure 5. Link utilization using the many sources asymptotic with the Bahadur-Rao

improvement and CLP heuristic (Star Wars tra�c). The many sources asymptotic with

the Bahadur-Rao improvement and CLP heuristic achieves practically the same utilization as

the maximum utilization (estimated using simulation). [ C = 155 Mbps ]
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Figure 6. Link utilization for Internet WAN and Star Wars tra�c. As was the case

for MPEG-1 tra�c, for Internet WAN tra�c the many sources asymptotic achieves a high link

utilization. However, while for Star Wars tra�c the gains of increasing the bu�er decrease

abruptly, for Internet WAN tra�c the gains of increasing the bu�er decrease smoother as the

bu�er size increases. This indicates that there are more time scales in Internet tra�c which, for

di�erent bu�er sizes, become important for bu�er over
ow. [ C = 34 Mbps, P (over
ow) � 10�4 ]
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Figure 7. Parameters s; t: theory vs. simulation for Star Wars tra�c. The values of

parameters s; t computed by the many sources asymptotic using the supinf formula (2) are in

good agreement with the values estimated using simulation. [ C = 155 Mbps, % = 0:93 ]
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Figure 8. Parameter s for MPEG-1 tra�c. The space parameter s decreases abruptly at

some bu�er size; this occurs because the bu�er has absorbed the fast time scales and only the

remaining slow time scales contribute to bu�er over
ow. The bu�er size (measured in msec)

for which this occurs decreases as the link capacity increases (left curve). Similar behavior is

observed for MPEG-1 tra�c with various contents (right �gure). [ P (over
ow) � 10�7 ]
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Figure 9. Parameters t and st for Star Wars tra�c. The time parameter t increases as

the bu�er size increases, indicating that slow time scales become important for bu�er over
ow

(left �gure). The product st abruptly increases for some bu�er sizes (right �gure); at this point

slow time scales become important for bu�er over
ow. [ P (over
ow) � 10�7 ]
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Figure 10. Parameters s; t for Star Wars and voice tra�c. Whereas for MPEG-1 tra�c

parameter s abruptly decreases for some bu�er size (indicating that slow time scales become

important for bu�er over
ow), for voice tra�c it gradually decreases, with a rate that also

decreases as the bu�er size increases (left �gure). This indicates a smoother change of the time

scales for voice tra�c. Parameter t for voice tra�c increases linearly with the bu�er size, unlike

the case of MPEG-1 tra�c where it exhibits abrupt jumps. [ P (over
ow) � 10�7 ]
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Figure 11. Parameter s for Internet WAN and Star Wars tra�c. Whereas for MPEG-1

tra�c the values of parameter s form two distinct regimes, corresponding to the two distinct

time scales that are important for bu�er over
ow, for Internet WAN tra�c they form more

than two regimes, indicating that for such tra�c there are more than two time scales which, for

di�erent bu�er sizes, become important for bu�er over
ow (left �gure). Also, di�erent segments

of Internet tra�c have di�erent values for s (right �gure). [ C = 34 Mbps, P (over
ow) � 10�4 ]
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Figure 12. Dependence of the e�ective bandwidth on the tra�c mix containing Star

Wars and voice tra�c. The e�ective bandwidth of the Star Wars stream changes slowly for

certain ranges of the tra�c mix. Furthermore, the sensitivity of the e�ective bandwidth on the

tra�c mix decreases as the link capacity or bu�er size increases. [ P (over
ow) � 10�7 ]
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(b) Star Wars + talk show

Figure 13. Dependence of the e�ective bandwidth on the tra�c mix containing Star

Wars + news/talk show tra�c. The content of MPEG-1 tra�c has a small e�ect on the

e�ective bandwidth; it is the MPEG-1 frame structure that has a larger e�ect. [ C = 155 Mbps,

P (over
ow) � 10�7 ]
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Figure 14. Dependence of the e�ective bandwidth on the tra�c mix containing Star

Wars and smoothed Star Wars tra�c. Observe that (1) the e�ects of the tra�c mix on

the e�ective bandwidth decrease when the link capacity or bu�er size increases, (2) there are

cases where increasing the bu�er size has a very small e�ect on the e�ective bandwidth, e.g., at

C = 622 Mbps the curves for B = 8 msec and B = 16 msec practically coincide, and (3) for some

bu�er sizes, smoothing has no e�ect on the e�ective bandwidth, e.g., C = 155 Mbps; B = 8 msec

(left graph) and C = 622 Mbps and B = 4; 8; and 16 msec (right graph). [ P (over
ow) � 10�7 ]
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Figure 15. E�ective bandwidth for Star Wars and smoothed Star Wars tra�c. When

the percentage of smoothed tra�c is small, the time parameter t (= 40 msec) is smaller than the

interval over which smoothing was performed (80 msec), and the amount of workload Xj [0; t]

that appears in the e�ective bandwidth formula (1) is smaller for the smoothed stream. Hence

the e�ective bandwidth of the smoothed stream is smaller than the e�ective bandwidth of the

unsmoothed stream. When the percentage of smoothed tra�c becomes larger than about 60%,

the parameter t becomes equal to the time interval over which smoothing was performed. Hence

smoothing has no e�ect, and the unsmoothed and smoothed streams have the same e�ective

bandwidth. [ C = 155 Mbps, B = 4 msec, P (over
ow) � 10�7 ]


