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Abstract— This paper introduces a framework for answering questions
regarding the conditions on the network load that allow a best-effort net-
work like the Internet to support connections of given duration that re-
quire a certain quality of service. Such quality of service is expressed in
terms of the percentage of time the bandwidth allocated to a connection
may drop below a certain level or the maximum allowable delay in placing
the call through the network waiting for more favorable loading conditions.
The call-acceptance conditions, which depend on the behavior of the system
over the lifetime of accepted calls, are thus based on transient models for
the congestion (instead of looking at the average behavior) and attempt to
exploit the time-scales of the fluctuations of the number of connections com-
peting for bandwidth. Extensions of the model consider the case of dynamic
pricing which allows connections that pay more to get larger shares of the
bandwidth, and investigate the trade-off between quality of service, the size
of the acceptance region, and the charge to be paid by the connection. Un-
der this framework we introduce an option contract that reduces the risk
of quality disruption, if a user has a fixed budget at his disposal, and calcu-
late its price. One potential use of this methodology is towards developing a
simple admission control mechanism for placing voice calls through an IP
network, where the decisions can be taken by edge devices.

I. INTRODUCTION

A serious criticism of the existing Internet protocols is their
inability to support services that require minimum bandwidth
guarantees. The Internet as it currently exists provides a simple
but robust best-effort service where connections obtain a share
of the available bandwidth that depends on the number of con-
nections that are active and compete for network resources. In
this paper we examine the conditions on the network load un-
der which a value-added service involving minimum bandwidth
guarantees can be supported for a given time period over such a
basic best effort service. As a good example, one can think of
the value-added service as being internet telephony, which re-
quires a minimum bandwidth defined by the coding standards
for voice.

The key idea in our approach is to consider the amount of
bandwidth that a new connection will receive over its duration,
which depends on the transient behavior of the network. The
basic problem we solve is to provide ways to calculate, for a
given time window and a state of congestion (number of ac-
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tive connections), the percentage of the time during which the
bandwidth the best-effort network allocates to a new active con-
nection will be above a minimum level. Interestingly enough,
providing some flexibility for the time the call must be placed
can increase the chance for the call to be accepted, and hence
delaying the placement of the call can be a reasonable strategy.
Our methodology allows us to develop a tractable way to com-
pute the admission control policy that takes into consideration
such broader quality-of-service definitions that include the time
duration over which the quality must be guaranteed, the delay in
call-setup, and the fraction of time the bandwidth requirements
must hold.

Our approach considers a number of different congestion
models that model the network at a connection level rather
than at a packet level, and in this paper are applied to single
link. The simplest model is the case of a link of fixed capacity
that is shared by simple best-effort (elastic) connections and by
quality-seeking (inelastic) connections, where capacity is allo-
cated on an equal basis to all connections. Best-effort connec-
tions arrive as a Poisson process, have exponential duration, and
receive an equal share of the bandwidth. Note that our model
focuses on connection dynamics rather than the packet scale.
Whereas packet dynamics have been shown to exhibit self-
similar behavior, i.e., persisting burstiness across time-scales
that differ by many orders of magnitude, connections initiated
by human users are well modeled by Poisson processes with
perhaps time-varying arrival rates [6]. Other models (discussed
in the Appendix) include the case of a link where connections
stay longer when bandwidth is more scarce, and the case where
best-effort connections are generated by on-off users that model
web browsing, where a user alternates between “thinking” and
requesting a file transfer.

The problem we solve is to determine for a given state of
the link (number of active connections) and for a given quality-
of-service as defined previously, whether to accept or reject a
quality-seeking call. In this paper the above admission control
rule is defined for the case where the majority of the traffic is
of the elastic type, and hence the transients of the occupancy
process of the link are defined by the process of the elastic calls.



The idea is that the amount of bandwidth a connection re-
ceives varies with time, and although this is a random process
there is some predictability to the way that this takes place. Lets
say that at this time the amount of bandwidth a connection ob-
tains is very small. Will this remain so or it will drastically
change in the near future? And in which direction will it move?
These are the questions we answer. Consider first the case where
the average load is low enough and on the average, the con-
nection should receive an amount of bandwidth � larger than
the minimum amount

�
required by the connection. Then if

currently the number of connections is higher than normal and
hence the share of the bandwidth below � , we anticipate that
soon many connections will terminate and the share of the band-
width will approach � , hence it may be reasonable to delay the
connection. Similarly, if the system is lightly loaded but the
average load is higher than the one required for supporting the
bandwidth

�
, this extra available bandwidth will soon vanish.

But how soon? This is important if these time scales are com-
parable to the duration of the quality-seeking connection. Our
approach allows for the calculation of the above time scales and
provides the tools to answer the above questions with reason-
able accuracy (for the models we consider) using appropriate
asymptotics.

The next important issue is the capability of a connection to
get more bandwidth when paying more. There is a substantial
amount of recent research in this area [8], [1], that suggest mech-
anisms for connections which by paying more can get a propor-
tionally larger share of the bandwidth. The idea is of a simple
network that sends to its edges congestion information (in a way
that generalizes the concept of packet loss in TCP), and serves
as an indication of the rate of charge that the network charges
the traffic streams. The sources at the edges decide at any given
moment the rate of transmission based on the rate of charge re-
ceived, in a way to maximize their net benefit. In this frame-
work, one can think of more general rate control algorithms than
TCP which, by operating at the edges of the network, will opti-
mize the overall economic efficiency of the system. In our paper
we consider such possibilities, without dealing with implemen-
tation details. In particular we consider the case where a con-
nection that is willing to pay ��� /s gets � times more bandwidth
than a connection that pays $1/s (the typical best-effort connec-
tion in our case). In this price-sensitive context, we investigate
issues related to the optimal spending of a fixed budget, and the
conditions for arbitrage if a similar service is offered by another
network where quality and prices are fixed (like the PSTN).

An interesting approach that has many common points with
ours is the one in [2], [3]. The idea is that a call should decide
whether to enter the network based on the current congestion
level (and hence the current price), where congestion informa-
tion along a certain route is signalled to the edges of the network
by marking packets. One can analyze the fixed-point of such
an interaction between offered load and congestion signals, and
solve for the steady-state of the system. Our approach is more
refined since it allows the study of the transients. Also we do
not explicitly model congestion at a packet level, but in terms
of the decrease of the bandwidth share. On the other hand, as it
currently stands, we deal with a simpler network case where a
single link is the bottleneck.

The paper is organized as follows. In Section II we present
the basic model for the link and the bandwidth allocation. In
Section III we analyze the system using asymptotics that cap-
ture the important aspects when the size of the system is large.
In Section IV we derive the shape of the admissible region as a
function of the various parameters (quality of service, call dura-
tion, willingness to pay more, etc.). In Section V we introduce
an option contract that reduces the risk of quality disruption, if
a user has a fixed budget at his disposal, and calculate its price.
Two other models that are based on our basic model are dis-
cussed in the Appendix. Finally, we end the paper with some
concluding remarks and suggestions for extensions.

II. THE MODEL

The system we consider has a single link of bandwidth �
shared by two types of services, best-effort data (elastic calls)
and bandwidth sensitive calls (inelastic calls) that have similar
requirements. Best-effort data calls arrive as a Poisson process
of rate � and inelastic calls arrive as an independent Poisson
process of rate � . We assume that all call holding times are
i.i.d. exponentially distributed with mean �
	�� and all calls share
equally the available bandwidth. This last assumption models to
some extent a best-effort network like the Internet in the case of
a single bottleneck link and connections using TCP with similar
round trip times.

Call durations in the above model are not affected by the load
of the network. We relax this assumption in the two models
discussed in the Appendix. The results of this paper are obtained
in the context of the above basic model but can be extended in
the context of the other two models.

Let �� denote the number of calls in progress at time � , and� � the bandwidth available for each call. (Note that, under our
assumptions, once admitted, all calls behave the same. This as-
sumption is relaxed below in Section IV-B when we allow in-
elastic calls to obtain more bandwidth than best-effort calls by
paying more.) Then

� �
� �
���� (1)

In the absence of any admission control the process �������������
corresponds to the number of customers in service in an

M/M/ � system with arrival rate �! "� and service rate (per
server) � . The stationary distribution of this process is Poisson
with mean #$�% &�('�)�� . The stationary distribution of ��������*� ���
immediately yields the stationary distribution of � � �+���*� ���

via
equation (1).

The most reasonable admission control is a threshold policy:
For some , , accept an inelastic call if and only if the current
number of calls in progress is less than , . Under this admission
control policy the process ��-�+���.� ���

is again a birth-death
process, whose stationary distribution can be calculated straight-
forwardly. The issue then becomes one of determining a good
value for , .

Recall that the purpose of admission control is to provide ac-
ceptable quality of service to the inelastic calls. The quality of
service experienced by an inelastic call depends on the band-
width allocated to it throughout its lifetime in the system. Thus,
in order to answer questions related to call admission controls,



we need to understand the system evolution following an ob-
served system state, not just the steady state behavior. In the
next section, we introduce fluid and diffusion limits for �� and� � that allow us to study the transient behavior of these pro-
cesses.

III. ASYMPTOTICS

We consider a sequence of systems, indexed by � , with
��� � . Such an asymptotic regime is certainly well moti-
vated by real communication networks, where bandwidths con-
tinue to grow larger. The asymptotics we obtain are immedi-
ately translatable into an approximation for a system with a fixed
(large) value of � . We keep � fixed while we let � � � � with��� � � � . In addition we assume that the requests for best-
effort service dominate the link as compared to requests for in-
elastic service, so that � )�� ��� �

as ��� � .

A. Number of calls in progress

We first consider the number of calls in progress. Let�
	 ��� � 
	 ���
� � (2)

Assume that
� 	 ��� � � � a.s. (almost surely), as ��� � ,

where
� ��� �

is a constant. Then by [4] or [5]
�
	 ��� � ���

a.s., uniformly on � � ����� for
��� � � � , where

� �"� ���+��� ����
is the unique solution, given

� � , to the ordinary differential
equation � ����

� � ��� � ��� � �*� � �
which yields��� � � �  � �� � � ������ � e 	"! �$# � �*� �

� (3)

For any
� ��� �

,
���%� � )��'& �)( as �*� � . If

� � � �)( ,
then

��� � �)( for all �*� � .
Let +


	 ��� �  	 ��� � � ���� � � � �-, �
	 ��� � ���/. � (4)

Assume that

+
 	 ��� 0� +

 � . (Where 0� denotes convergence

in distribution.) Then by [4] or [5]

+

	 ��� 0� +

�� , where

+
 �

�

+
��+����� ���

is the unique solution, given

+
 � , to the stochastic

differential equation� +
�� � � � +�� � �  �1 �  � ��� ��2 � �

and �
2
�+��� � ���

is a standard (0 drift, unit variance) Brownian
motion process. If

� � � �)( then

+
 is an Ornstein-Uhlenbeck

diffusion process.
Combining (2) and the convergence of

�
	 ��� to
��� moti-

vates using the fluid approximation � ��� for  	 ��� . Similarly,
combining (4) and the convergence of

+

	 ��� to

+
�� motivates

� ���� 3� � +�� as a diffusion approximation of 4	 ��� .

B. Bandwidth available for each call

We next consider the bandwidth available for each call. Let�� 	 ��� �
 �
	 ���

� �
� �
	 ���

� �

	 ���

� � 	 ��� �

If
� 	 ��� � � � , with

� ��� �
, then

� 	 ��� � �� � & �5687 . It is

immediate from (3) that if
� �9� �

, then
��� � �

for � � �
, so�� 	 ��� � �� � � �568: , �*� �

.

Let

+
� 	 ��� � � �-, � 	 ��� � �� �/. . Then+
� 	 ��� � � �-, � 	 ��� � �� �/.�� � �-, �� 	 ��� � �� �/.

� � �<;  �
	 ���
�  ����= � � � ��� � �
	 ������ �
	 ���

� � +

	 ������ �
	 ���

0� � +
����>� �

C. Acceptable Bandwidth Threshold

Assume that the minimum bandwidth required for the inelas-
tic calls is

�
, i.e., if

� � � �
then callers are receiving acceptable

quality. Under our assumption that the users are sharing the link
equally the last inequality can be expressed as

 	 ���@? � ) � & BA � (5)

Consider a system without admission control, in steady state.
As already pointed out, without any control the steady state
distribution for the total number of calls in progress follows
from that of the M/M/ � system, i.e., it is Poisson with mean
#$�  .�('�)�� � � � )��� �C�#D� � ' . The probability that an incoming
call will find the system in an overloaded state ( �� �  A ) can
thus be easily calculated. In order to keep this probability within
an acceptable level (typically below, e.g.,  � 	"E ) we would like
to know the values that �  � may take. We set � �  � � � ���!�  
and determine IP # -� �  A ' as depicted in Fig. 1. Observe that
when � � )�� is close to  A the probability changes abruptly from
almost zero to almost one.

Let us consider the limit case where �F� � , then IP # �
	 ��( � ) � '��  or
�
, if
� )�� �- ) � or

� )�� ?  ) � respectively. The
diffusion approximation attains the same zero-one limit, except
at
� )�� �  ) � , where the above probability converges to  )HG .

The zero-one behavior of the diffusion with
� )��3I�  ) � is to be

expected since, in this case, J  A � � �
	 ��( J is K #$� ' . This would
require

+

	 ��( to be K #D� � ' to bridge the gap, which cannot hap-

pen because

+

	 ��L is an K #  ' stochastic process. This situation

motivates a “more sensitive” choice of the minimum bandwidth
requirement

�
. In particular we choose

� 	 �� so that

�� 	 �� � � �
�  
M � ��� (6)

where M is a constant. The easiest way to interpret the scaling
in (6) is to note that, given the original data � , � , � , and

�
,

if we choose
� � � ) � and

� 	 �� � �
, then (6) implies that
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Fig. 1. Probability that the number � � ���� of users is greater than the maximum
number � �

allowed, in order that the available bandwidth to be enough ( � ).
When �	��
� is close to � �

, probability changes abruptly from almost zero
to almost one.M � � � �

�� ���!�� . This choice affects our diffusion analysis,

but not our fluid analysis. With
� � � � )�� , the steady state

probability that 4	 ��� �  A is approximated by the steady state
probability that

+
�� � M , which is  ��� � M�� ! � # , where

� #�� ' �
�� >�����	 (! 	#"%$& > �(' .

IV. CALL ADMISSION CONTROLS

Connections that compete for bandwidth have different
weights that may also vary with time, denoted by � � , and re-
ceive service from a GPS server that models the link. An in-
terpretation for � � is the rate of charge a user is incuring; users
which are being charged more should receive a proportionally
larger share of the bandwidth. Since we concentrate on a single
bottleneck link, bandwidth allocations produced by various no-
tions of fairness coincide, e.g., weighted max-min fairness [7]
and proportional fairness [8]. We scale the values of the above
weights by assuming the best-effort users request connections
with ��� �  .

There has been considerable research of how a user picks his
weight ��� in order for certain global efficiency criteria to be met.
In general, weights are produced by some kind of market mech-
anism, such as smart markets [9] or tatonnement processes [10],
where they correspond to bids or charges per unit of time re-
flecting network congestion. The idea is that users monitor the
amount of bandwidth

� � they receive for a given value of � �
(rate of charge), and determine the current price per unit band-
width ����) � � . Then, taking into account their utility for band-
width, they increase or decrease the value of their willingness to
pay, ��� , in order to increase or decrease the amount of purchased
bandwidth. At the equilibrium, such a strategy results in max-
imizing the total user utility (social welfare maximum). In this
paper we simply assume that the system allows inelastic users to
declare their willingness to pay � � , and get a proportional share
of the bandwidth ( � � �  for best-effort).

An inelastic user can share bandwidth in many ways accord-
ing to the way his weight � � varies with time. We consider the
following cases:
1. ��� �  , i.e., he is treated as a best-effort user. This is the
case where no pricing algorithm is implemented and all users

are treated equally.
2. ����� � �  , i.e., constant weight throughout the connec-
tion, giving him greater share than the best-effort, but this share
depends on the overall congestion.
3. ��� varying with � , in a way that the bandwidth received at any
point in time is exactly

�
, the minimum bandwidth required.

The above cases may fit to different transport services, e.g., TCP
in 1, Diff-Serv in 2, CBR in 3, or any scheme employing com-
plete priority over best-effort users. In the next sections we give
call admission controls for inelastic users that depend on system
evolution after an observed state, for the three aforementioned
ways that their weight � � varies.

A. Case 1: )+* �-,
A.1 Fluid analysis

Given a number of
� � calls at ��� �

, the system relaxes to�)( � � )�� as the time passes. If
� � �  ) � � � )�� then��� �  ) � for small � , and

��� �  ) � for large � . We would like
to calculate the time for the system to reach the  A boundary,
i.e., the � relax such that

�/. relax �  ) � . Using (3), we have� relax �
 
�10 243 �! � � ��! � ��65 � (7)

This relation can be elaborated into in a simple decision rule
in the case that the best-effort link is shared mainly by elastic
calls; inelastic calls come once in a while. At the instant that an
inelastic call arrives, a simple rule is to check if the time to relax
to  ) � (after the call is accepted) is larger than the length of the
call. That is, an inelastic call is accepted (routed through the
best-effort network) if � ? � relax, where � is the call holding
time. Using this constraint for � in (7) one obtains that the call
is accepted if � � ? �� � � �� �  � � e ! . � (8)

Thus, if � � � 	�� � 0 2 # � )�� ' � 0 2 # � )�� �  ) � 'D� , no inelastic calls
can ever be accepted.

So far we have assumed that
� � �  ) � � � )�� . There are

three other cases to consider: (i)  ) � � � )�� and
� � �  ) � :

���
will never reach  ) � , so calls can always be accepted; (ii)  ) � �� � � � )�� : �� �  ) � for all � , so calls can never be accepted;
(iii)  ) � � � )�� and

� � �  ) � :
��� �  ) � for small � and��� �  ) � for large � , so calls with long enough duration can

be accepted, if we are willing to accept bandwidth under the
minimum,

�
, initially. This occurs because the system starts at

�
� �
with too many calls and then relaxes towards steady state,

where the bandwidth requirement can be met.
All of the above are true at the fluid scale, i.e., within o #$� '

as � � � . A refinement to the above analysis, on the order
of O #D� � ' can be given when statistical quality guarantees are
provided, as in the next section.

A.2 Diffusion approximation

Given the duration (or an estimate) � of the call and '	 ��� �7 , the quality received by the best-effort link may be assessed



by the fraction of time that (5) is violated during the length of
the entire call. This can be written as

�. IE ; � .� 1 # 
	 ��� �  A ' � ������� 
	 ��� � 7 = �
�. � .� IP

�

	 ��� �  A ��� 
	 ��� � 7 � � � � (9)

In Section III-A it was indicated that as � � � ,

+

	 ��� con-

verges in distribution to a diffusion process with drift
� � � and

time dependent diffusion coefficient
�  � ��� .

Suppose that
� � � � )�� . Then

�  � ����� G � , for all ��� �
,

and

+
 is an Ornstein-Uhlenbeck process. The transition distri-

bution P � #�� J � ' # where P � #
' J � ' � P #

+
�� ? ' J + � � � '�' of this

process is equal to a Gaussian cdf centered at �����	� # � � ��' with
variance

� #  � ���	� # � G � ��'�'�)�� . Equation (9) can thus be approx-
imated for large � by

� .� 
  � P �
�  A � � ���� � ���� � ��� � �
� � .� �  � P � # M J � ' � � � �

(10)

where � � # 7 � � � � '�) � � and M � � � � �� � �! � .

�
Recall

from Section III-C that for the diffusion analysis we assume� 	 �� is given by equation (6). Solving equation (6) with � fixed

yields M � � � � �� � �! � . �
Now suppose we set an upper bound � on the fraction of time

that (5) is violated during � � ����� . With M , � , and � fixed, let� A &������� ���H� 	�� � .� �  � P � # M J � 'D� � � ? ��� �

Then the maximum allowable number of users at �-� �
is ap-

proximated (for large � ) by � �!  3� � � A &�� 	 ��� . � � � .
Under this call admission control, a call is accepted if '	 ��� ?� 	 ��� . � � � .
Denote by � ( the stationary fraction of time that (5) is vio-

lated (as �<� � ), i.e.  ��� ( # M J � ' �  � � � M�� ! � # . Then
if � � � ( , calls with long enough duration can be accepted,
while if � � � ( shorter calls are favored. This effect is il-
lustrated in Figs. 2 and 3. In Fig. 2 we examine � 	 ��� . � � � as
a function of � with � �  � � � for 3 different values of � :� ��� � �  ! G#"  � 	%$ �&� ( , � ��G � ' "  � 	%$ � � ( , and� �  � 	"E � � ( . We also take

� � �
 ' , � �  , and  A �)( ' � .This yields (using (5) and (6)) M � �  � . If � �&� ( , call

admission decisions are independent of call holding times. If� � � ( , the acceptance threshold on the number of users tends
to � , while if � � � ( , only short enough calls may be ad-
mitted. In Fig. 3 we examine � 	 ��� . � � � as a function of � with
� �  � � � and � �  � 	"E for 3 different values of

�
:
� � �

 ,� � �
 ' , and

� � �
 +* . In all cases � �  and  A �,( ' � .This yields respective values for M of  � ' �  � , �  � , and � ( �  � .Keeping level of quality � fixed (  � 	"E in the example), the link

may operate in one of two regimes depending on link load: (i)
long enough calls can always be accepted (e.g., for

� � �
 ' ) or

(ii) short calls are favored (
� � �

 +* ). Even small variations of
�

can make the link switch between these two regimes.
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It is worth noting that, because only the voice calls are subject

to admission control, and they are a vanishingly small fraction of
the total traffic, the admission control does not affect the dynam-
ics of the limit process. Admission control does, however, affect
the blocking probability of voice calls. The voice call blocking
probability at time � is IP # 4	 ��� � � 	 ��� . � � � ' . The diffusion
approximation to this quantity is IP #

+
�� � � A ' . If the process is

in steady state, IP #

+
�� � � A ' �  ��� � � A � ! � # .

Figure 4 illustrates the call blocking probability for various
call durations ( � ). In a lightly loaded link, longer calls have
more chances to be accepted This is because if in the steady
state enough bandwidth is available, and shortage occurs in the
beginning of the call, then if the call stays for long a time, it will
obtain its bandwidth requirements during the specified fraction
of its duration. On the other hand under heavy load, long calls
are always denied service and only short enough calls can be
accepted.

B. Case 2: )+* � ) � ,
With � �  inelastic calls receive more bandwidth than best-

effort calls, and we need to keep track of how many of each are
in the system to determine exactly how much bandwidth each
receives. Fortunately, due to our assumption that � ) � � � �

,
the number of inelastic calls in the system is C�# � ��' and does
not affect either the fluid or diffusion asymptotics. In particular,� 	 ��� � � � ) 
	 ���  C�#$� 	�� & > ' , and this C�#$� 	�� & > ' term does
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Fig. 4. Achieved call blocking probability for different call durations (T).

not affect either the fluid limit or the diffusion limit. It is also
clear that, by the same argument, it is not necessary that all in-
elastic calls behave in the same manner. Thus, each can have its
own

�
and � .

B.1 Fluid analysis

Essentially the same analysis in IV-A.1 can be used on this
case, and the call admission control now is:� � ? �� � � �� � � � � e ! . � (11)

B.2 Diffusion approximation

The probability that the instantaneous available bandwidth to
a user having weight � , will drop below

� 	 �� , is IP # � � ) 
	 ��� �
� 	 �� ' � IP # 
	 ��� � �� A ' , which leads to an expression for the
mean time that the bandwidth drops below

� 	 �� , similar to (10).
A similar reasoning to that in Section IV-A.2, leads to a quan-
tity � 	 ��� . � �	� � � which is depicted in Fig. 5 for various choices
of � . Each curve in Fig. 5 gives raise to an acceptance region.
An arriving user will be positioned onto the #  � ��� ' plane ac-
cording to the link load (  � ) and his holding time ( � ). His de-
clared weight specifies a # � 	 ��� . � �	� � � ��� ' curve on that plane,
which determines whether the user is accepted, or not, if he is
positioned below the curve, or not, respectively. Thus, the call
admission control is


	 ��� ? � 	 ��� . � �	� � � � (12)

Conversely, one can compute the minimum weight that one has
to declare in order to attain a fraction � of time spent by � ) ��
below

� 	 �� during � � ����� ; this is depicted in Fig. 6.
Suppose now that weights � reflect user’s willingness to pay

for a unit of flow per unit time (see [10]) and he is given the
option to connect to a circuit-switched network at a price of � A
per unit of time. Then, he will certainly choose to connect to the
circuit-switched network when the best-effort link determines
that it cannot serve him at a lower price.

The corresponding # � 	 ��� . � �	� � � � ��� ' curve is the “maximal”
acceptance region. That is, if the state of the network  � and
the declared call holding time � specify a point over that curve,
then the best-effort link cannot serve the user at a price lower
than � A .
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and requests quality level 3 , is accepted, when, at call arrival

instance, ��� best-effort users are being served.

From now on, � � will reflect willingness-to-pay for a unit of
flow per unit time unless otherwise stated.

C. Case 3: Constant bandwidth share

By letting the user declare (or assigning him) a willingness-
to-pay at arrival that is constant in time, it may be the case that
there are times that the received bandwidth drops well under

�
.

Thus, at those times the received bandwidth is totally useless to
him. At other times, he may receive bandwidth well above

�
,

whose slack is again useless. Thus, although at certain times
he does not use the bandwidth that the network gives him, he is
charged for it a proportional price.

The network itself, operating under competition, should link
charges to actual usage as accurately as possible. Thus, it has
the incentive to assign a bandwidth share close to

�
. By doing

that, the user now is charged for the usage of
�

, which is approx-
imately

� 
	 ��� ) � . This corresponds to a constant adaptation of
the user’s willingness-to-pay in order to maintain a share of

�
throughout the duration of the call.

It is obvious here that a user can maintain any bandwidth
share (up to � ) throughout his connection by continuously ad-
justing his weights. So network load clearly cannot be the only
constraint, given that no other inelastic users are using the net-
work at the same time. If � � expresses willingness-to-pay then
certainly a user might want to bound the values that � � might
take. So if a circuit-switched network exists, which offers the



inelastic service for � A per unit of time then a constraint arises
imposed by competition.

Assuming a pricing scheme like the above, what is the “com-
petitive” acceptance region for the best-effort link? Competition
requires that a user connecting to a best-effort link should not be
charged an amount exceeding the amount charged by the com-
petitor network, i.e., the circuit-switched network in our case.
This can be expressed as the requirement that

� .� ���
�
� ? � A � � or

� � .� �
	 ���
�
� ? � A � � (13)

C.1 Fluid analysis

If we take ��� � , then we obtain� � ? �
� A � � �! � ��! #  � e 	"! . '  �� �

For � � � , the right hand side tends to
� � ,

� )�� , or  � , if
� A � � � )�� , � A � � � )�� , or � A � � � )�� respectively.

An increase in utilization can be achieved if users tolerate
“bad quality” for a fraction of time up to � . Since

�
is the

minimum bandwidth that they can operate on, “bad quality” can
mean “temporarily out of service”, thus they should not pay dur-
ing these periods of time. If a user arrives at a time when the
prices are high enough then the best-effort link may not be able
to serve him for less than � A � . If instead, the user is tolerant
as we previously described, then the network might be able to
serve him for less than � A � , since he would not have to pay for
an initial period up to �� . Similarly, he would not have to pay
for a period before the end of his call, if the prices are high at
the end of his call.

Recall that price per unit of time at time � is given by
� ��� ,

so prices go up or down according to whether
� � � � )�� , or� ��� � )�� respectively.

In the first case,

� 	 �+	 � � .� � ��� � � ? � A #  � �%' � �
This expression is identical to (13) for a call of duration #  ��%' � .

In the second case,

� .� . � ��� � � ? � A #  � �%' � � or� � ? e ! � . � � A � � �! � #  � �%' ��! �  � e 	"! 	 �+	 � � . #  
�
� � (14)

C.2 Diffusion approximation

The diffusion case is a bit more involved. Using � 	 ��� �
� 	 �� 6�� ���:� we can write

��	 ��� � � ���  � � +
	 ���
� �!  
M � � �

As usual, we assume that
� � � �! , so that

��� � �! . We can thus
write

��	 ��� �    � � � � � +�� � M � � (15)

Recall that IE � +�� J + � � �

+
 �  	"! � . Thus the condition

IE ; � .� � 	 ��� �
� �����
+
 � = ? � 	 ��A � is, approximately (for large � ),+
 � ? � � � ��	 ��A �   ! �� � � �  	"! . �

If we write � 	 ��A �   � ) � � , this becomes+
 � ? � �  �"M �  	"! . �

V. OPTION CONTRACTS

In practice an inelastic user will not be able to change � � in-
finitely fast as to attain the desired bandwidth amount. Further-
more there is a risk of exceeding a fixed budget. In these cases a
user might want to reduce his exposure to risk by specifying an
upper bound on the values that � � may take.

Financial derivatives can be used to hedge risk in these cases.
Similar to [11], we construct an option contract that gives the
user the right to buy bandwidth share at a prescribed “strike
price” (denote it by � 	 �� ) anytime during the length of a connec-
tion. As in [11], we interpret this option as a series of European
call options (cf. [12]) integrated over time.

Due to the fact that bandwidth is a perishable commodity,
there seems to be no possibility of developing a value of this
option based on arbitrage arguments. We thus take a direct ap-
proach. Using (15), and writing � 	 ��� �   +

��	 ��� ) � � , we

have

+
��	 ��� � ! � � +
	 ��� � M � . Now, writing the strike price as

� 	 �� �   ��� ) � � , we obtain the expected value of the option
to the caller to be

	 	 ��� �
 � � IE ; � .� � +

� 	 ��� � �� 	 �� � 
 � � �����
+
� 	 ��� � � = �

Although a non-risk-seeking third party would have no incen-
tive to sell these options at a price of

	 	 ��� , one can argue that
the network provider does have an incentive, because it entices
risk averse customers to use its guaranteed quality service. (One
could also argue that, with no transaction costs, a profit seeking
third party with sufficient capital would have an incentive to sell
these options at a price of

	 	 ���  �� for any � � � .)
Let  #��(��� ' denote a normally distributed random variable

with mean � and variance � . Recall that, conditioned on

+
 � �� ,

+
�� is normally distributed with mean �  	"! � and variance�! �  �  	 > ! ��� . Define

+
	 	 ��� � � � 	 	 ��� . Then

+
	 	 ��� � +

	 �as ��� � for
� � � � � � . We can then write+

	 � � � .� IE
� #

+
��� � �� ' 
 ��

+
� � � � � � �

� � .� IE

� � �  � 
 � �
�  
M �  	"! � � �� �  �  	 > ! � � �� �"M� � � � 
 � � �



Taking into consideration the fixed price � A and the option
instrument introduced above, we are led into a simple call ad-
mission control in a way similar to the previous section: a call is
accepted in the best-effort network if the cumulative charge (op-
tion price plus maximum per unit of time charge) is less than the
corresponding charge of a fixed price alternative network, i.e.

	 	 ���  � .� IE ,���	 ����� � 	 �� ���
+
��	 ��� � � . � � ? ��	 ��A � �

Note that

��	 ��� � ��	 ����� � 	 ��  , ��	 ��� � � 	 �� . 
 �

so that

	 	 ���  � .� IE , ��	 ����� � 	 �� J +��	 ��� � � . � �
� IE ; � .� ��	 ��� �

��J +��	 ��� � � = �
Thus this admission control is identical to that of the previous
section.

VI. CONCLUSIONS

In this paper we have presented a new approach for reason-
ing whether or not to accept a connection that requires some
minimum quality of service over a simple best-effort network
where connections get an equal share of the bandwidth. The
contribution of the paper is to relate the above issue with the
condition of the current state of the network rather than its av-
erage behavior. We show that call durations are crucial (if calls
that seek quality have infinite duration, then the relevant anal-
ysis is based on steady state), and that there is an interesting
relation with pricing. We view the work in this paper as being a
first step in the direction of constructing state-dependent price-
sensitive call-admission controls. We also show how financial
derivatives can be used in order to reduce the risk inherent in
congestion pricing and hide the time-scales mismatch between
end-to-end rate control algorithms and rapid fluctuation of con-
gestion prices, yielding robust call admission controls.

We believe that the analysis can be further extended to include
the network case where more than one link can constrain the
bandwidth along a route. Although this is theoretically interest-
ing, we believe that we should validate our results first in an ac-
tual network like the Internet by measuring the actual bandwidth
allocation process and see whether the time scales are close to
the ones predicted in our models. Another interesting approach
would be to fit the parameters of our model in the actual situa-
tion and use it in order to predict its future evolution.

There are several directions for further research. One is to-
wards allowing the inelastic traffic to be of a substantial per-
centage, and hence influence the transient analysis. Another is
towards modeling the effect of UDP traffic. When UDP traf-
fic is substantial, the available capacity for TCP flows will be
� � � � ��� � , where

� � is the amount of capacity taken up by
UDP. An interesting problem is the description of the

� � process
in a way that allows a similar analysis as in this paper to carry
through.

Another basis on which to make a call acceptance decision,
using the same model, is the distribution of the first passage time
of 
	 ��� to  A , assuming that 4	 ��� �  A . Approximating


	 ��� as before by � ���  � � +�� , and assuming that
� � � � )�� ,


	 ��� �  A is equivalent to

+
�� �3M . Let� � ��� 2 � � � � � �

+
�� �3M � �

We can then base the call acceptance decision on IE , � � J + � � � .
or IP

� � � ? �)J + � � � � . For example, we may accept a call

only if IP
� � � ? �)J + � � � � ? � , for some � . The Laplace

transform of � � is available, see e.g. [13] and references con-
tained therein.

APPENDIX

I. TWO OTHER MODELS

There is another model for best effort data calls, where each
such call has an i.i.d. exponentially distributed “file size” with
mean � 	�� . There is a maximum access rate � at which the file
can be served (we assume that

� � � ). Thus the service rate for
each file is the minimum of � and

� � , which we write as � �
� � ,

and the call departure rate is ��-� #�� � � ��' � �	��# �� � � 
 ' . The
process  L is that of an � )�� ) 7 queue with 7 � � 
 . (This is
only true if � )�� is an integer. If � )�� is not an integer there is a
“fractional server”; this has no effect on our asymptotics.) The
asymptotics for this process are known, but are not as explicit
as for the � )�� ) � queue. In particular, the results of [5] can
be used to show that

� 	 �� � � a.s., where
� is the unique

solution to the ordinary differential equation� ����
� � � � � � � ��� �  # � (16)

and

+
 	 �� 0� +

 , where

+
 is the unique solution to the stochastic

differential equation� +
�� � �  � 
 568:�� � � + 	� � �  � 
 568:�� � � + 
�

 1 �  � � � ��� �  # ��2 � � (17)

where � 
 � ���� #�� � � ' and � 	 �������# � � � � ' .
A straightforward analysis of (16) shows that, if

� � � then���%� � as �*� � , while if
� � � then

���%� �)( � � )��	� .
(If
� � � then

��� � � � for
� �B�  )�� , and

�)( �  )�� for� � ?  )�� .) Thus, either the system is unstable or access limited
(in which case the link is not fully utilized). This does not seem
to be reasonable. The problem is that this model is flawed: It
lacks any kind of “self-limiting” mechanism that would allow
users to fully utilize the link while cutting back on their usage
when their throughput deteriorates.

A third model is motivated by best effort web browsing. We
assume that there is a finite population , of web browsing users,
and let , ��� � , so that ,�� � as �<� � . Web browsing
users can be in one of two states: thinking or waiting. In the
thinking state users are deciding what to click on next. Each



thinking user exits the thinking state after an independent (of
other users and his/her own past behaviors) exponentially dis-
tributed time with mean � 	�� . After clicking, users enter the
waiting state, waiting to receive the response from the network.
Here we assume, as in the second model, that the service rate
for each waiting user is � �

� � , and the total departure rate from
the waiting state is �	� # -� � � )�� ' , where �� denotes the num-
ber of waiting users. We let � � denote the number of users
in the thinking state, and define

�� 	 ��� �&� 	 ��� ) � . The re-
sults of [5] can be used to show that � � 	 �� � �� 	 �� # � � � � �� #
a.s., where � � � �� # is the unique solution, given � � � � �� � # with� �  �� � ��� , to the system of differential equations� ����

� ��� �� � � � � � ��� �  # (18a)� �� ��
� � � � � ��� �  # � � �� � � (18b)

A straightforward analysis of (18a) shows that � ����� �� � # �� �)( � ��'( # as � � � . If � � � � � )�� � �  , then
�)( � � �

� )�� � � 	�� and
��'( � � )�� . If � � � � � )�� � ?  , then

�)( �
� � ) � �� �	� � ? � 	�� and

��'( � �	��� ) � �� �	� � .
Next let

+
� 	 ��� � � � � �� 	 ��� � �� � � . The results of [5] can

be used to show that
� +
 	 �� � +� 	 �� � 0� #

+
 �

+
� ' , where

+
 is

the unique solution to the stochastic differential equation� +
�� � �  � 
 568:�� � � + 	� � �  � 
 568:�� � � + 
�

 � � �� �  �
#�� ��� �  ' ��2 � � (19)

and

+
� � � � +�� .

Suppose that
� � � �)( . With

�)( ? � 	�� (which occurs if
� � � � � )�� � ?  ) the system is access limited, and

�� ����� � � .
In this case inelastic calls always receive sufficient bandwidth
and can always be accepted. With

�)( � � 	�� (which occurs if
� � � � � )�� � �  ), we can rewrite (19) as� +

�� � � � +��  � G � ��2 � �
In this case

+
 is an Ornstein-Uhlenbeck process, so the analysis

of Section IV can be used.
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