
Efficient agent-based selection of DiffServ SLAs over MPLS networks
within the ASP service model*

Thanasis G. Papaioannoua, Stelios Sartzetakisa,c and George D. Stamoulisa,b

a Institute of Computer Science (ICS), Foundation for Research & Technology – Hellas (FORTH)

P.O. Box 1385, GR 711 10, Heraklion, Crete, Greece

b Department of Informatics, Athens University of Economics and Business (AUEB), Greece

c Correspondence: S.Sartzetakis (e-mail: stelios@ics.forth.gr, telephone: +30-81-391729, telefax: +30-81-
391601) – Other author e-mail: {pathan, gstamoul}@ics.forth.gr

ABSTRACT

The demand for QoS provisioning support over Internet grows continuously. One of the factors contributing to this demand is

the increasing penetration of Application Service Providers (ASPs) to the market. This necessitates the development of

mechanisms for the efficient realization of Service Level Agreements (SLA). In this paper, we develop and evaluate an

approach for efficient SLA selection and implementation (support, policing/shaping, and charging) in a DiffServ-over-MPLS

network domain. We describe how this approach is applied in a realistic service provision scenario based on the ASP service

model. A negotiation process between a user and a network provider is introduced; thus the user can choose from the alternative

options for allocation of resources the one that better matches his needs. For the purposes of negotiation, we develop an

appropriate utility model that expresses user preferences in a simple yet informative way. Furthermore, we discuss the

implementation of our approach in a small-scale experimental DiffServ-over-MPLS network, for the case of a simple scenario

of ASP services provision. We also assess the economic efficiency of our approach by means of simulation experiments, the

results of which advocate that our approach is incentive compatible, in the sense that individual optimization by each user (in

SLA selection) also leads to improved social welfare. Our approach is quite general and can be combined with several policies

for network management, or as a complement to the traffic engineering procedures.

* A preliminary version of this work was presented at SPIE International Symposium on Information Technologies 2000
(Program on Internet Performance and Control), Boston, USA, November 2000. This work was supported in part by the
European Commission under IST project M3I (IST-1999-11429).

Keywords: SLA negotiation, utility, ASP, DiffServ

Running Header: Efficient Selection of DiffServ SLAs

1. INTRODUCTION

The continuously growing demand for Quality of Service (QoS) provisioning support over Internet has led researchers to define

various possible solutions to this problem. The most scalable and less demanding solution, in terms of modifications to the

existing Internet infrastructure, is the Differentiated Services (DiffServ) architecture [1]. It is summarized in applying a

forwarding Per-Hop Behavior (PHB) to traffic aggregates at each hop, through a code-point assignment at every IP flow1

according to a Service Level Agreement (SLA). While this approach is attractive for its scalability properties it has certain

drawbacks, since little care has been taken for QoS provisioning on a per-application or a per-user basis. For this reason,

Integrated Services (IntServ) [2] operation over DiffServ has been proposed [3]. Under this approach, DiffServ domains are

viewed as single hops in the Resource Reservation Setup Protocol (RSVP) [4] process. Within the DiffServ domains, bandwidth

for the traffic aggregates is reserved either statically or using RSVP (per traffic flow or per traffic aggregate [5]) or/and

Bandwidth Brokers, as in [6], where the resource allocation process for end-to-end (across domain boundaries) SLA provision is

addressed.

Multi-Protocol Label Switching (MPLS) [7] supports the notion of traffic aggregates and furthermore it can offer different

QoS level for each traffic aggregate. At the same time, MPLS provides some very important features that facilitate traffic

engineering. Therefore, DiffServ over MPLS seems to be a very promising approach for efficient QoS provisioning in terms of

both scalability and flexibility.

An SLA contains among others the Service Level Specification (SLS)[8], which can be viewed as the traffic contract. The

SLS contains guarantees regarding the throughput, the packet loss probability, or the delay experienced by the traffic; such

guarantees can be qualitative (e.g. low, high) and/or quantitative (e.g. a certain peak rate). While the specification of the SLS has

to be as technical and detailed as possible, in order for the network provider to accomplish resource allocation as needed, it

should also be made easy for the user to specify or select a predefined SLS in a simple way. Furthermore, the SLSs have to be

1An IP flow denotes the packets flowing through an IP connection, which is uniquely identified by the tupple of parameters
(source IP address, source port, destination IP address, destination port, transport protocol). For convenience, IP flow will be
referred as “flow” in the rest of the paper.

negotiated between different administrative domains as well as between administrative domains and users. Only thus users can

select the SLSs they really need and the network can allocate its resources in an efficient way, according to its particular policy.

In fact, this should be done in such a way that both goals are met at the same time, which would amount to incentive

compatibility.

The role of Application Service Providers (ASP) in the service provision industry is emergent. ASPs are third-party entities

that manage and distribute software-based services and solutions to customers across a wide area network from a central data

center. ASPs enable companies to realize significant cost savings, by out-tasking to ASPs complex enterprise applications. This

out-tasking solution enables a company's technical staff to focus less on maintaining a complex enterprise software application

and more on utilizing the application efficiently to improve its business processes and decision-making capabilities. By

leveraging its data center and in-house support staff over multiple customers, an ASP provides companies with high quality

cost-effective IT solutions. Thus, it is considered of particular importance to provide to this industry a particular mechanism of

negotiating, supporting, policing/shaping, and charging SLSs for its customers.

In this paper, we develop and evaluate an approach for efficient SLS selection and implementation in a DiffServ domain

within a MPLS network. A negotiation process between a user and a domain is introduced; thus the user can select from

alternative options for resource allocation the one that better matches his needs. We assume that services are charged according

to a usage-based scheme that provides the user with the right incentives. For the purposes of selection, we develop an

appropriate utility model that expresses user preferences in a simple yet informative way. The communication of the user QoS

preferences to the network as well as that of the results of the resource allocation process back to the user is done simply and

effectively. The remainder of this paper is organized as follows. In section 2, we describe the overall architecture proposed for

negotiation and enforcement of SLSs over a DiffServ domain in the context of the ASP service model. In section 3, we apply

our method in a realistic ASP service provision paradigm, providing certain examples of services. In section 4, we describe the

adopted charging scheme and justify our choice. In section 5, we present a distribution of the information that is essential for the

rationality and the scalability of our approach. In section 6, we propose a model for user utility that expresses user preferences

for SLS selection. In section 7, we describe in detail the communication among components of the architecture during the

negotiation process. In section 8, we present some simulation experiments that indicate that using our negotiation process for

SLS selection, the right incentives for the user, which are provided by the adopted charging scheme, are maintained. In section

9, we present specific choices for the implementation of our architecture in an experimental network and discuss certain

performance issues. Finally, in section 10, we present some concluding remarks and possible extensions of our work.

2. THE ARCHITECTURE

We consider a multi-hop DiffServ network domain in which telecommunication services are provided in various QoS levels.

This DiffServ domain is built on top of MPLS. Multiple Connectivity Providers share the control and ownership over the

network resources. The overall responsibility about the end-to-end network service provision belongs to one or many Network

Service Provider(s) (NSP(s)) who has contracts with certain Connectivity Provider(s). Also, various Application Service

Providers (ASPs) register to NSPs and offer to their customers access to QoS-differentiated application services. Each customer

subscribes himself to an ASP in order to have access to its application services through a service portal. Upon subscription, a

customer (e.g. a company) specifies user profiles for the users of the service (e.g. the employees of the company). Each user

profile contains information about user preferences regarding services, including those on application and network QoS. Also,

the ASP associates a User Agent (UA) to each user. This agent negotiates the user’s SLSs with the NSP on behalf of the user

and according to his profile. The user profiles and the UAs are stored in a directory service in the data center of the ASP and

they are downloaded to users’ hosts upon logging into the services of the ASP. In this negotiation process, the representative of

the NSP is a software entity to be referred to as Policy Server (PS). The PS is responsible for making the proper decisions for

resource allocation that guarantee efficiency with respect to network utilization, while enforcing incentive compatibility by

means of charging. The policy directions followed by the PS are stored in a well-known Policy Directory (PD), which is unique

for the network domain (e.g. restrictions on bandwidth usage or a certain charge discount for specific users or applications). A

software entity, referred to as the Information Directory (ID), holds information about the current network domain state (e.g. the

available bandwidth or the packet loss probability per QoS class). This information is updated over time. This way the network

provider is able to apply his policy rules for specific flows or users. For performance reasons, it is preferable to have multiple

instances of the same PS as we explain in section 9.

The User Agent has to select the proper SLS x in order to maximize the net benefit of the user, i.e. to solve the

maximization problem:

{ })()(max xcxu
x

− (1.1)

where u(x) is the utility function [9] of the user (expressing his preferences and his willingness to pay per SLS) and c(x) is a

function that gives the expected charge for a service provision that is compliant to an SLS. If the maximum value is negative,

then no SLS is selected and the user is served best effort class, which is offered for free. The PS can compute in advance the

expected (or, in certain cases the actual) charge for a service provision. Thus, the User Agent negotiates with the nearest PS for

the proper SLS, in order to solve the above optimization problem. The complexity of this maximization problem will be

discussed in section 7. An important feature of our architecture is that it is necessary neither for the UA to know the location of

the PS prior to the beginning of negotiation, nor for the PS to know the location of the UA. Indeed, we employ the RSVP RESV

message to communicate the QoS requirements (in terms of the lowest acceptable QoS class) of the user's receiving application

to the NSP, if the receiver of the traffic initiates QoS provision. Generally, we assume that a certain QoS class corresponds to a

certain scheduling priority and/or a certain dropping probability, resulting to a minimum throughput and/or a maximum delay

for a certain transmission rate. On the other hand, if the sender of the traffic has QoS requirements for the user’s sending

application, then these are communicated to the NSP, using the RSVP PATH message. It should be noted that in both of the

above cases, RSVP PATH and RESV messages are exchanged between the source and the destination of the traffic, as in the

standard RSVP protocol; however, we exploit only one such message in order to communicate the user’s lowest acceptable QoS

class to the NSP. Using RSVP, an application requests QoS in a clear and controllable way that is appropriate for the resource

allocation process. In fact, we assume that the user only specifies the lowest acceptable QoS class in an abstract way e.g.

adjusting a slide bar in the application. After SLS selection the PS associates the traffic flow of this SLS with a certain QoS

class that is allocated specific MPLS resources, and finally notifies the sender of the service traffic, asking it to begin service

provision according to the specified SLS.

Certain QoS classes are provisioned along each path (Label Switched Path (LSP)). A NSP has to ensure uniform properties

for a certain QoS class over all the LSPs in which the QoS class is provided. That is, a QoS class provides the same QoS level

over all LSPs. In order to achieve this, a NSP must implement certain mechanisms for balancing the traffic load among the QoS

classes on the various LSPs. However, a NSP could allow different properties for the same QoS class over different LSPs and

let the users (with their SLS selection) to achieve the load balancing. In this case, a QoS class in different paths has been

allocated different resources in terms of capacity and buffer, and thus it provides a different QoS level. For simplicity, in the rest

of the paper, we assume that the NSP employs appropriate mechanisms for balancing the traffic load among the QoS classes on

the various LSPs, thus rendering the selection of path irrelevant to the net benefit of the user. Henceforth, the term QoS class

essentially refers to a QoS level.

The operating point parameters2 (i.e., space parameter s and time parameter t, see [11]) and other statistical characteristics

are different per QoS level. We introduce here the notion of the noncompliance risk, which is defined as an a priori upper bound

on the percentage of traffic that will not be treated in accordance to the SLS. The noncompliance risk specifies the upper tails of

the distributions of the QoS parameters of a SLS; e.g., an upper bound on the end-to-end delay per packet, that can only be

violated for a percentage of packets less than or equal to r. Alternatively, the non-compliance risk could be considered as the

percentage of time in which the QoS parameters of a SLS are not met. The purpose of the noncompliance risk is twofold:

• Assure customers of a basic set of expectations that the provider promises to meet.

• Protect the provider by limiting liability, in cases of QoS violations.

Note that, although the noncompliance risk is a factor computable by the network, it is understandable by the users too. In

order to give users the right incentives, different QoS levels are associated with different charges and possibly different

noncompliance risks for the same traffic flow. The PS has to find the eligible QoS levels for the traffic of each new SLS and to

get the corresponding charges by the Connectivity Provider(s). The UA has to make the final selection of the SLS that

maximizes the user’s net benefit.

3. THE SERVICE PROVISION SCENARIO

In this section, we describe a realistic service provision paradigm within our architecture. For simplicity, we assume that in the

network considered one NSP has the responsibility for the provision of network services. Also, we assume that in this network,

one ASP offers application services such as video-on-demand, ftp, broadcast TV, or video-conference. In such a case, the ASP

and NSP have to coordinate to deliver the services, which have to be provided consistently by both the network and the ASP’s

2 The space parameter s expresses the statistical multiplexing capability of a link. If the capacity of the link is very large in relation with the
peak rate of the various flows, then s=0. However, s increases if the peak rate of the various flows is large relatively to the capacity of the link.
The time parameter t expresses the time prior for overload to occur. The parameters (s, t) together represent a network operating point, which
depends on factors such as bandwidth, buffer sizes, traffic mix, and can be estimated from traffic measurements.

data center, together with their support, shaping/policing and charging. This is possible via eXtensible Markup Language

(XML), which provides a flexible way of communication, through a Document Type Definition (DTD) common for the ASP

and NSP.. In general, the service scenario is as follows (see Figure 1):

1. The ASP publishes the services offered using XML. That is, a service portal receives notification of the new service

offerings from the ASP via XML. Then, the service portal adds them to the retail portfolio.

2. The administrator of customer-company (or a certain user who is actually the customer) accesses the portal and

subscribes to an application, and subsequently the ASP and the NSP are notified, via XML, about the new customer.

3. Then, according to the ASP model of service provision, the ASP offers the customer the necessary software in order for

the user(s) of the customer to instantiate the subscribed services. That is, the ASP offers the application components

that are necessary for the user(s) in order i) to request from the NSP the necessary network resources according to their

QoS requirements, and ii) to be delivered the service. This software, depending on the specific service provided, may

include various voice and video encoders and decoders, and/or featured software for sending and receiving voice, video

and data (server and client functionality).

4. A user (which is associated with a subscribed customer) logs into an ASP service having certain QoS requirements.

5. The PS (being the representative of the NSP) negotiates the selection of SLS with the user’s UA.

6. The PS provides the necessary network resources to satisfy the QoS requirements of the selected SLS by the user.

7. Then, the PS reserves the required service content(s) at the ASP’s data center for the user.

8. The user is provided the service with the requested QoS.

Figure 1. The service provision scenario.

The communication of the QoS requirements and the SLS selection process depicted in steps 4 and 5 of Figure 1, are

different in the cases that the service is provided to a single or multiple users in a service session. For convenience, we consider

first the case of service provision to a single user, and subsequently the case of service provision to multiple (i.e. two or more)

users.

3.1 The Case of a Single User

We consider the case where the service is provided to a single user in a service session. Examples of such services are video-on-

demand (with pre-stored or live content) and ftp (for downloading data). We assume for simplicity that the user requires QoS in

his receiving traffic; then, the communication of the QoS requirements and the SLS selection process are as follows (see Figure

2):

1. The user specifies his lowest acceptable QoS class through his service interface in order to instantiate a service session,

and initiates a connection with the ASP’s data center.

2. The application component of the user sends along the route to the ASP’s data center a RSVP RESV message (step 2b

in Figure 2) with the required QoS class for the receiving flow of the service session.

3. The RSVP RESV message is intercepted by the ingress router of the network (through an appropriate protocol, such as

the Common Open Policy Service (COPS), the Simple Network Management Protocol (SNMP) or the Telnet Client

(TelnetCLI)) and sent to the Policy Server (PS).

4. The negotiation process that we describe in section 7 takes place between the PS and the UA of the user, in order the

SLS that maximizes the net benefit of the user to be selected.

5. The parameters of each RSVP RESV message are modified according to the results of the negotiation process, and then

the message travels along the route to the ASP’s data center. The modified RSVP RESV message contains information

for the categorization of the traffic of the receiving flow of the user to a QoS class.

6. When the RSVP RESV message reaches the ASP’s data center, a new service session is instantiated for the user with

the required QoS.

Figure 2. The communication of QoS requirements and the SLS selection steps in the case of service provision to a single
user in service session.

The RSVP PATH messages (2a) that are shown in Figure 2 and sent between the user premises and the ASP’s data center are

only used for the operation of the RSVP protocol. If, however, the user required QoS in his sending traffic (as opposed to the

receiving traffic, which is the case depicted in Figure 2), then RSVP PATH messages would be used for the communication of

the QoS requirements to the PS. In such a case, the roles of RSVP PATH and RESV messages would be interchanged.

3.2 The Case of Multiple Users

In case that the service is provided to two or more users concurrently, two sub-cases may arise: 1) the QoS provided to each user

is independent from the QoS provided to the other users, and 2) the QoS provided to a user is inter-dependent with the QoS

provided to the other users. We discuss these sub-cases separately below.

3.2.1 Independent QoS for Different Users

In this sub-case, the QoS negotiation and provision can be considered separately for each user. Thus, the communication of the

QoS requirements and the SLS selection process for each user are accomplished in the same way as in the case of the service

provision to a single user in a service session. An example of such a service is broadcast television, where multiple users may

receive the same content, each with different QoS.

3.2.2 Inter-dependent QoS for Different Users

In this sub-case, the QoS negotiation and provision cannot be considered separately for each user. Instead, QoS has to be

considered uniformly, i.e. a single SLS has to be selected for all the users of the service for all sending and receiving flows. For

example, for two users talking over a telephony application, it is not meaningful for them to be served at different QoS classes,

because the QoS class of the traffic when being sent would not coincide with that of the same traffic when being received. For

convenience, we consider in the discussion below a specific example of such a service, namely, the multi-party video-

conference. Also, for simplicity, we assume that the communication is done through the ASP’s data center, that the service

involves only one flow of information per direction between the ASP’s data center and each user, and that all users are

associated to the same customer. We consider a “join period” during which each participating user communicates his QoS

requirements (which are the same both for his sending and receiving flows), sending a RSVP RESV message along the route to

the ASP’s data center. The lowest acceptable QoS class for the service provision is the maximum required QoS class of all

users. Also, the maximum acceptable noncompliance risk for the service provision is the minimum of the maximum acceptable

noncompliance risks specified by the users. After the end of the join period, the SLS negotiation process takes place between the

PS and a Customer Agent (CA) that represents the customer in this process. The CA selects the SLS that maximizes the net

benefit of the customer, i.e.

[

−∑
i

iix
xcxu)()(max] (3.1)

where x is a SLS, ui(x) is the utility and ci(x) is the charge of a participating user i. The CA communicates with the UA of the

participating user i in order to find ui(x) and other information such as the maximum acceptable noncompliance risk by the user

i. After SLS selection, the PS sets the rules to the ingress points of the network for the traffic categorization of the service

according to the selected SLS. Another alternative would be for each user to perform negotiation separately, and then for the CA

to select the highest of the QoS classes individually selected as the uniform QoS class for all users.

4. THE CHARGING SCHEME

The Policy Server (PS) computes the charge for each offered SLS on the basis of effective bandwidth, using the formula below

(see [12]):

}min{)(

)1(
)(

1log1);(

);()(

)(

ii

tHts

iii
i

ii

tβ/ρ h,tH

e
tH

m
ts

mxa

Tpmxaxc

iii

+=

−+=

=

 (4.1)

x in the above formula is the SLS in terms of leaky bucket parameters [h, (ρ, β)] and a QoS class i, H(t) is the effective peak rate,

which is sufficient for the calculation of āi(x;m), m ∈ [0, ρ] is the mean rate of the traffic to be induced by the source, and Ti is

the duration of the flow for that QoS class. For simplicity, the parameter Ti will be denoted as T in the remainder of the paper.

The parameters m and T are either known to the application server in advance (e.g., for a video movie), or can be estimated by

the User Agent on the basis of past information. pi is price per unit of effective bandwidth for āi(x;m), which in theory should

coincide with the shadow price of the constraint that limits the resources for a QoS class i. si, ti parameters are the operating

point of a QoS class, i.e. the operating point of the most congested link3 of the path(s) over which QoS class is implemented. In

fact, āi(x;m) is an upper bound on the actual effective bandwidth and corresponds to that of an on/off source. The actual

effective bandwidth of a source is computed according to the so-called inf-sup formula, derived by means of Large Deviations

techniques [11].

3 The charging scheme of equation (4.1) is based on the assumption that all flows traverse a certain link that it is the most congested

one (bottleneck link), and they are charged according to resource usage on this link. If this assumption is not applicable, then the charge can be
computed by adding the outcome of (4.1) over all links of the path traversed by each flow. Our negotiation approach can be modified to cover
this case as well, which however is more complicated.

This charging scheme is applicable to the calculation both of the expected charge of a new flow, and of the actual charge to

be paid by the user after service provision. These two values are not expected to vary too much. This difference is due to the

discrepancy between the a priori mean rate calculated by an application server for a piece of content in a QoS class and the

actual mean rate with which the service is provided. This is not important, because the guarantees provided by a DiffServ

network, as currently defined by the IETF, can be loose and users are actually charged according to the resources they consume,

i.e. their actual mean rate measured by the network during service provision. The scheme provides users with the incentive to

choose the tightest possible traffic profile (h, ρ, β), for a resource usage minimizing the actual effective bandwidth and thus the

actual charge to be paid by users. Also, through negotiation, users select the QoS class that maximizes their net benefit and thus

it is closer to their actual needs. As explained in [12], this charging scheme is fair (i.e. reflects actual usage), if the variance of

the ratio of ā(x;m) to the actual effective bandwidth α(x;m) is small, for the set of those x and m that characterize the services of

interest. Also, it gives the incentives to users to select SLSs that better match their actual needs.

Consider that we have a set I of QoS classes in the DiffServ network, where the variable i∈I has the value 0 for the lowest

and the value 1 for the highest QoS class. Thus, the value i of an intermediate QoS class can be viewed as the QoS it provides

relatively to the highest QoS class. In this case the price pi per unit of effective usage for each QoS class i can be given by an

explicit function P(i) of i. In general, c(x) has to be increasing when QoS improves, in order for users to have the right

incentives to select the QoS class that optimizes their net benefit (i.e. attain the best trade-off between QoS and charge).

5. DISTRIBUTION OF INFORMATION

In order for the described architecture to be feasible and scaleable, and for the traffic of a new flow to be assigned a SLS using

our negotiation process, information has to be available and exchanged among the components in a proper way. In this section

we describe and justify a certain distribution of information that serves these goals.

A User Agent (UA), being a representative of the user, stores the utility model and has access to the corresponding user

profile. Furthermore, the user's application is able to communicate to the corresponding UA any necessary information, such as

the upper bound on the noncompliance risk acceptable by the user. The Policy Server (PS) has full control of the network

resources, by being aware of the available bandwidth, the operating point (s, t), the price per unit of bandwidth and the

noncompliance risk of each QoS class. The PS offers the users some information on the service classes provided, by posting the

values of parameters t for each QoS class; the reason why this is useful will be explained below. In order to proceed with our

negotiation approach, we have to specify how the PS finds the traffic parameters for the SLSs in each QoS class (which are

subsequently conveyed to the resource reservation request). This issue is discussed below.

The ASP’s data center posts information regarding the performance of the traffic transmitted either by itself or by an

application server component downloaded by the ASP to the user premises. For all the services it provides, the ASP computes

this information and stores it to its data center. Furthermore, each piece of content is transmitted under different encoding in

each service class (i.e. QoS class). For example, a particular video may be MPEG-encoded, with various quality factors. Thus,

the ASP’s data center posts the following information: the traffic parameters in terms of token bucket parameters (ρ, β), peak

rate h, and the mean rate m with which the traffic of each content is sent over each class as well as the duration T of the service

if both are known, which is the case for pre-stored content. If the content is live as for example in the case of the broadcast

television service, then the duration T of the service as well as the mean rate m have to be estimated by the UA of the user

(based on past information) and to be passed to the PS during the negotiation process that we describe in section 9. Furthermore,

the ASP has the incentive, due to competition, to compute and employ the traffic parameters that minimize the charge for each

piece of content in each class. The ASP should pass this information to the relevant server components or to store it to the ASP’s

data center. An ASP is able to accomplish this if it is aware of the way the NSP charges. As already explained in section 3, we

assume that the NSP charges proportionally to the effective bandwidth of the user's SLS. The ASP has to derive the traffic

parameters {h, (ρ, β)} that minimize this charge. (Note that in equation (4.1), we used the index of the QoS class i for certain

quantities. For simplicity, we drop this index in the discussion to follow, since the procedure described below should be applied

for each QoS class separately.) The peak rate h for each piece of content in each QoS class is determined by the amount of

shaping performed by the server component (or by the ASP’s data center) for this specific content: A smaller peak rate results

from a larger amount of shaping, which however influences the playout quality due to the shaping delay introduced. As

explained in [12], given the value of the peak rate h, there are various pairs of the token bucket parameters (ρ, β) for which all

the traffic sent would be conformant. These pairs belong to an indifference curve such as the one shown in

Figure 3. The effective bandwidth corresponding to a SLS is increasing in the effective peak H(t)=min{h, ρ + β/t}. An ASP

has simply to choose the pair (ρ, β) that minimizes H. If the minimizer of H is h, then the selection of (ρ, β) does not affect the

charge. Otherwise, if the minimizer of H is ρ+β/t, then the pair (ρ*, β*) that minimizes H is that point at which the tangent to the

indifference curve has slope –t; see Figure 3. We assume that this point is always chosen, even if it turns out that h<ρ*+β*/t.

Thus, an ASP derives the parameters {h, (ρ*, β*)} that minimize the estimate of the charge per time unit for a certain content in a

QoS class that is characterized by t and posts this information to its data center. It is worth noting that it is not necessary for the

PS to post the values of the space parameter s. Moreover, the above procedure for selecting (ρ, β) is valid regardless of whether

the duration T of the flow is known or has to be estimated.

Figure 3. The indifference curve of parameters (ρ, β) for a given peak rate (shaping delay) and for a specific percentage of
traffic to be conforming.

A brief description of the distribution of information is as follows: The user specifies the lowest acceptable QoS class for

the traffic to be received and his maximum acceptable noncompliance risk, through his interface downloaded by the ASP to the

user premises. The ASP calculates and posts (in the ASP’s data center) the traffic parameters in each QoS class that minimize

the charge for the user. Thus, the receiver component has only to transmit inside the RSVP RESV message the QoS class that is

required by the user. Using this information, the PS is able to negotiate with the UA of the user the selection of SLS, and then to

fill the RSVP RESV messages with the corresponding parameters to the selected QoS class.

So far, we have presented a distribution of information, where each piece of information is stored by a component that has the

incentive to do so. In the next sections, we explain how the components act and interact in order for the UA to make an efficient

selection of the SLS.

6. MODELLING USER UTILITY

In this section we discuss how the UA selects the best SLS on behalf of the user. First, we have to model user preferences in a

user utility depending on the various parameters involved in the SLS. The traffic information in this SLS includes some of the

RSVP parameters, namely the peak rate h and the token bucket parameters (ρ, β). Note that a flow with the same traffic

parameters {h, (ρ, β)} is differently served by different QoS classes, in terms of throughput, delay, jitter and packet loss. The

user requires the lowest acceptable QoS class by adjusting a slide bar determining the requested QoS in his user interface. Also,

he specifies an upper bound for the acceptable noncompliance risk r by the network. In particular, the SLS should comprise the

tuple of parameters (h, ρ, β, QoSclass, r) that maximizes the net benefit of the user. Trying to compute five parameters

simultaneously is a very complicated task. However, this can be considerably simplified by assuming that only the charge-

minimizing triplet {h, (ρ, β)} of each QoS class is an eligible choice. Thus, it only remains to select the QoS class and the

noncompliance risk of a SLS.

The ASP’s data center posts the traffic parameters per service content in each QoS class that minimizes the expected

charge. In order for a user to be served by these optimized parameters per QoS class, he has to pay an amount of money per QoS

class. It is assumed that the maximum amount the user is willing to pay (denoted as Wmax) is also contained in the user profile.

This amount corresponds to the best possible contract for the service and for a specific content. Under the above assumptions,

the UA has to select only the QoS class and the noncompliance risk values so as to maximize the user’s net benefit. In order to

express the corresponding user-preferences we have developed a simple utility model that serves our purposes. In particular, the

utility function for an SLS x is given by the formula below:

)()(where
),,()()(

maxDF

usernetwnetwuser

WQoSUxW
rrrrfxWxu

=
≤=

 (6.1)

In the above formula, x is the SLS in terms of peak rate h and token bucket parameters (ρ, β) and QoS class. (However, recall

that given the QoS class, all h, ρ and β values can be taken as given.) ruser is the maximum percentage of noncompliance with the

SLS accepted by the user and rnetw is the noncompliance risk expected to be offered by the network for an SLS. f(ruser, rnetw) is a

normalized function that expresses the user’s increased satisfaction for low values of rnetw. W(x) is a monetary expression of the

user’s utility for this SLS when there is no risk of QoS violation (i.e. rnetw = 0); that is, W(x) is the user’s willingness to pay for

this traffic contract in the certain QoS class. Note that the user satisfaction should be maximized (with f = 1) when rnetw= 0, and

decrease as rnetw approaches ruser. This is due to the assumption that a user is satisfied with any rnetw that is lower than or equal to

ruser. Therefore, when rnetw increases and approaches ruser, user satisfaction should decrease. In fact, we expect f to have the shape

depicted in Figure 4. For each particular user the “decreasing” segment of the curve, the coordinates of its saddle point, and its

minimum value will depend on the sensitivity of the user to the noncompliance risk offered by the network. Finally, U(QoSDF) is

the normalized utility factor that corresponds to this QoS class of DiffServ, and expresses the percentage of Wmax that the user is

willing to pay for this QoS class; this factor equals 1 for the highest such class.

Figure 4. A possible f(ruser, rnetw) function.

The network services that the user asks for are either elastic or guaranteed. Note that we assume that in general a higher QoS

class results in a higher scheduling priority and/or a lower dropping probability: both result in higher bandwidth consumption by

the higher QoS class under the requirement that the same traffic is transported. Thus, the shape of the function U(x) (with

respect to the DiffServ QoS classes) can be reasonably taken to be the same as that of the user utility expressed as a function of

bandwidth, which is the case thoroughly studied in [10]. Therefore, for elastic services the utility function is concave, as shown

in Figure 5a, due to the diminishing marginal utility induced by an additional unit of bandwidth when the amount of bandwidth

already allocated increases. For guaranteed services, the utility function is initially convex and then concave with respect to

bandwidth; see Figure 5b. However, for guaranteed services it does not make much sense to consider the convex segment of the

utility curve as acceptable, because the marginal increase in utility due to a small increase in the bandwidth to be allocated is

increasing; this implies that the user has the tendency to require more and more bandwidth thus “abandoning” this segment.

Therefore, the guaranteed utility function, as an approximation, can be taken as identical to elastic except for the fact that it

starts at an index of QoS class larger than 0. Recall that the UA of a guaranteed user knows this starting point, which is specified

by the user through a sliding bar!

Figure 5. A normalized utility function U with respect to QoS class for elastic (a) and guaranteed (b) services.

Finally, note that for both functions U(QoSDF) and f(ruser, rnetw) included in the expression of u(x), we have only discussed

on their shape. For each particular user, the exact such functions depend on the details of his preferences. A practical approach

to cope with this is for the UA to employ a typical function U(QoSDF) and a typical function f(ruser, rnetw), and then customize

these by means of a supporting learning procedure. This matter is left for future research.

7. THE SLS SELECTION PROCESS

In this section, we describe the SLS selection process that takes place for the categorization of the traffic of a new flow to a

service class. Depending on whether the mean rate m and the duration T of the new flow are known a priori by the ASP or they

are estimated by the User Agent of the user, the SLS selection process is different. Let us first consider the case that the mean

rate m and the duration T of a new flow are known a priori to the ASP, i.e. the service content is stored to the ASP’s data center.

In this case, we have the following steps in the SLS selection process:

1. The SLS request of a user application reaches the closest Policy Server (PS). The RSVP RESV message contains the

lowest QoS class that will be acceptable by the user.

2. The PS identifies the UA that is associated with the user of the application through the location information enclosed

in the RSVP RESV message and starts negotiating on the SLS that will be finally offered.

3. In the beginning of the negotiation process, the UA informs the PS of the parameter ruser that expresses the maximum

acceptable value of noncompliance of the requested SLS with the SLS offered. Using this parameter, the PS is able to

communicate with the Information Directory (ID) and to find the eligible offers that satisfy the user requirements.

Each offer is composed of QoS class, noncompliance risk rnetw, the parameters (s, t) of the QoS class and an expected

charge c(x).

4. In order to compute c(x), the PS employs the available information about the traffic parameters for each offer in terms

of peak rate h, token bucket pair (ρ, β), the mean rate m and the duration T of the service flow per QoS class for the

specific piece of content that is ordered from the ASP’s data center, and the information contained in the ID. The ID

contains network state information, as the operating point (s, t), the available bandwidth and the noncompliance risk of

a certain QoS.

5. The PS communicates the offers [c(x), rnetw, QoS class] to the UA, which solving the net benefit maximization

problem selects the proper SLS for the user. For simplicity, we assume that this optimization is carried out

exhaustively for the discrete set of QoS classes offered. (It is plausible that the complexity of this process can be

improved if the concavity and monotonicity properties of the functions involved are exploited.) If the maximum net

benefit in the SLS selection process for a new flow is negative, i.e. the negotiation process does not find a SLS that

serves the QoS requirements of a user for the flow, due to a relatively low willingness to pay or a highly loaded

network domain for the required QoS classes, the traffic of the new flow is served best effort. The sequence of

messages exchanged between the components during the SLS selection process is depicted in Figure 6.

On the other hand, if the mean rate m and the duration T of the new service flow are not known a priori to the ASP’s data

center (for example in the case of the broadcast television service), they have to be estimated by the User Agent based on

previous executions of the service with similar content. In this case, steps 3 and 4 differ from those depicted in Figure 6 in the

following:

• In step 3, the UA informs PS for the maximum acceptable value of ruser, for the requested content, for the estimated

mean rate m of the new service flow, and for its estimated duration T.

• In step 4, the PS calculates the expected charge for each offered SLS using the parameters (h, ρ, β) that are announced

by the ASP’s data center for each service content per QoS class, the mean rate m and the duration T that are estimated

by the UA, and the information received from the ID.

Figure 6. The SLS selection process, when the content of the service flow is stored to the ASP’s data center.

It should be noted that Figure 6 applies directly to the case of a single-user application (see subsection 3.1), or a multi-user

application with independent QoS for the various users (see subsection 3.2.1). In the case of multiple users with inter-dependent

QoS (see subsection 3.2.2), the following modifications apply:

• If customer net benefit is maximized, according to formula 3.1, then all steps of Figure 6 are the same except for the

fact that Customer Agent replaces the User Agent.

• If each user performs net benefit maximization individually (as discussed in the end of subsection 3.2.2), then there

should be added to Figure 6 a penultimate step, in which the Customer Agent combines all outcomes taken from the

UAs of the users, in order to decide on the uniform QoS class. In fact, this uniform QoS class will be set (by the

Customer Agent) tto the maximum of the individually selected QoS classes.

In the single-usercase, the SLS selection process involves the exchange of a few messages only. In fact, this number of

messages equals the number of SLSs (i.e., QoS classes) eligible for this user, which in general is small., For this reason, the

number of iterations needed for solving the net benefit maximization problem in (1.1) is small. Additionally, each iteration only

requires the computation of u(x) and c(x), which is straightforward. Therefore, the overhead for solving the net benefit

maximization problem is small. The above also apply for the communication and computation overhead per user in the case of

multiple users, with the addition of one more message sent by each User Agent to the Customer Agent. Therefore, the

communication and computation overhead per user of the SLS selection process is minimal in both the single- and the multi-

user cases.

8. SIMULATION EXPERIMENTS AND RESULTS ON ECONOMIC EFFICIENCY

 Recall that as described in section 4, the charging scheme employed provides the right incentives to users for SLS selection that

reflects their actual requirements. However, is incentive compatibility maintained for certain users that apply this negotiation

process to select their SLSs? That is, is social welfare (i.e. the sum of user utilities) also promoted when each user performs

individual optimization?

To investigate this we performed repeatedly the following simulation experiment: We compute the social welfare resulting

by employing the negotiation process for sharing an amount of resources K to a number of users N (whose QoS is independent

of each other’s), and compare it with the social welfare resulting when sharing the same amount of resources equally to the N

users. In this experiment, all users request the same service and content (e.g. the same video). Half of the users are taken as

elastic and the rest of them as guaranteed. Furthermore, the utility functions are parameterized and users have different

willingness to pay. All parameters and willingness to pay follow uniform distributions of various means and variances (the exact

parameterization and the distributions of the various parameters as well as of the willingness to pay are discussed below). The

net benefit maximization process selects a certain QoS class (and, thus, resource consumption) for each user to be served. These

selections also determine the total amount of resources K that should be allocated and the total charge Ctot for the users. The

charging function c(k) of the network for a QoS class k, using the charging scheme we mentioned, can have any increasing

shape; i.e. it can be either linear (e.g. if the parameter of QoS class differentiation is bandwidth), or convex (e.g. if the

parameter of QoS class differentiation is cell loss probability), or concave (according to a specific policy of the network

provider) or a mix of them. We compute the social welfare Unb emerging under the negotiation process.

Then, we share the resources K equally to each user, by offering to all of them the QoS class charged for Ctot/N. This

corresponds to resource usage K/N for each user. Adding the new utility values for the new QoS class of the same users (i.e.

maintaining the same utility functions as previously), we obtain the new total utility Ufair. We noticed that Unb > Ufair for all the

shapes of the charging function and for various uniform distributions of willingness to pay. This advocates that incentive

compatibility is maintained with the proposed negotiation process.

Figure 7. The range of the utility functions of guaranteed and elastic users (a), and (b) the various shapes of the charging

function (concave, linear, convex).

In particular, regarding user utilities and charging for different QoS classes, we used the following formulae in our

simulation experiments (see also Figure 7):

()
()[]{ }

()[]

cvarmax

maxconvex

maxconcave

maxlinear

maxguaranteed

max
-λ

elastic

WWW
 CxxC

C. / x xC
CxxC

 W / . λ-xxU

 W - exU

+=
=

+=
=

+=

=
−

2

1

)(

63351log)(
)(

33130tan)(

1)(χ

 (8.1)

where x is the QoS class of an SLS, and λ is a random variable that is uniformly distributed in the interval [2.25, 10]. Wmax is the

willingness to pay expressed as the sum of a fixed term Wc = 2000 and a term Wvar, which is a random variable that is uniformly

distributed in the interval [0, 2E[Wvar]]. E[Wvar] is fixed (for all simulated users) in each experiment, and in successive

experiments takes the values 30000, 35000, …, 100000. Also, Cmax = 60000 is the charge for the service in the highest QoS

class. Figure 8 depicts the percentage of difference in the social welfare attained using the negotiation process for net benefit

maximization (Unb) and that using the equal split (fair process) of network resources (Ufair), for the three shapes of charging

function and for E[Wvar] ranging between 30000 and 100000. (A continuous set of QoS classes was assumed.)

Figure 8. The percentage of difference between Unb and Ufair, for the various shapes of the charging function, when E[Wvar] ranges from

30000 to 100000, and Wc= 20000.

In Figure 8, we observe that the percentage differences between Unb and Ufair are always positive, and that their shapes are

convex in E[Wvar]. Therefore, our approach is always more efficient than the fair process. The improvement achieved using our

SLS selection process in social welfare is substantial in the cases of concave and linear charge. On the other hand, under convex

charging, the mean QoS class costs less than the mean charge, implying that the fair process results in a better QoS class than

the mean. Therefore, the loss in social welfare due to the fair process is limited. It should also be noted that when E[Wvar] is

large, then almost all of the users select a high QoS class. Thus, the fair process does not alter significantly the SLS of most of

the users, and the associated loss in social welfare is very small. We have performed the above simulation experiments for

various values of the parameters and all results are in favor of incentive compatibility when using the net benefit maximization

process to select the optimal SLSs for the users.

9. IMPLEMENTATION ISSUES

So far, we have described the architecture, and the SLS selection approach. In this section, we present specific choices adopted

in the implementation of our approach in a real network domain providing QoS-differentiated video-on-demand services to a

single user in a service session. The network domain consisted of three routers and three end-hosts. The routers in the network

ran Cisco MPLS implementation, while the end-hosts ran Windows 2000. RSVP was employed for communicating the resource

allocation requests, because it provides a clear and controllable way for applications to express their QoS requirements.

Windows 2000 platform was used for convenience as it supports RSVP and performs the shaping, policing and marking of the

flows according to RSVP signaling. Windows 2000 platform is not mandatory for the implementation of our architecture, as any

RSVP implementation downloaded to user premises as a plug-in would satisfy our purposes. In that case, the ingress routers of

our testbed would perform the tasks of shaping, policing and marking. Furthermore, according to the process described in

section 5, the computation of the RSVP traffic parameters for the resource reservation request can be transparent for the end-

user, who may ask for a required QoS class in an abstract way (i.e. adjusting a slide bar, thus asking for a more expensive and

better service or for a less expensive and inferior one). In the ingress routers, we used the protocol Common Open Policy

Service (COPS) {[13], [14]} in order to intercept RESV messages and forward them to the Policy Server, which is partly a

COPS server (see Figure 9). Recall that the PS location is not known to the UA. The choice of COPS was preferred from other

eligible protocols (SNMP, TelnetCLI), because it facilitates modifications of reservation requests according to the results of the

negotiation process as well as discovery of PS location. The Policy Directory (PD) and the Information Database (ID) are

implemented using Microsoft Active Directory. The PS uses LDAP for the storage and retrieval of information to PD and ID.

A user’s receiving application component sends a RESV message to the ASP’s data center with the QoS request for a new

flow reception. Upon reception of the RESV message from an ingress router of our network, the following steps take place:

1. The RESV message is redirected to the PS.

2. The PS using the destination address contained in the SESSION object of the RESV message identifies the user’s UA and

negotiates with it.

3. A specific SLS is selected by the negotiation and the PS uses COPS in order to change the RESV message properly. The

new RESV message contains the traffic parameters with which the flow is served in the selected QoS class and a DCLASS

object [15] with the DSCP of the QoS class.

4. The RESV message passes transparently through the other routers of the network, i.e. the RSVP protocol is used only for

signaling purposes and not for resource allocation.

The ASP’s data center, receiving the RESV message, sets the shaping, policing and marking rules for the new flow

transmission. The specific DSCP contained in the DCLASS object of the received RESV message is used by the server

component for marking the packets of the new flow.

Figure 9. The use of COPS protocol to intercept QoS request and employ QoS provision according to the SLS selection

process.

Note that the use of RSVP along with the COPS protocol provides a means of controlling resource usage according to the

results of the negotiation process. All resource requests are forwarded to PS, which modifying them according to the results of

the negotiation, controls the resource allocation procedure in a network domain. The PHBs are applied to the traffic entering the

MPLS network according to the DS values of the packets using the E-LSP method described in[16]. According to the E-LSP

method, the information about the PHB to be applied by the network is conveyed to the EXP field of the Shim Header of the

MPLS packets, for up to eight traffic aggregates along a LSP. Finally, the state information for the SLSs and the traffic

aggregates in the various PHBs are stored in a Microsoft Active Directory using LDAP.

The proposed architecture can be used as a framework through which a network provider can enforce the results of a SLS

selection process, according to certain policies for resource allocation. Indeed, the implementation demonstrated visually the fact

that, for the same video-movie, users willing to pay more are served by a higher QoS class and receive better quality. This is

accomplished with minimal processing overhead and modification requirements for the network core, since traffic classification,

policing, shaping and marking operations are done by the edge hosts, or by the ingress routers in case that Windows 2000

platform is not used. Furthermore, the signaling overhead is also minimal as every reservation request is processed only once

and its state is stored in the Policy Server only. Thus, in terms of scalability, our architecture shares the same properties with the

DiffServ architecture, which scales well for large network domains. It is preferable in terms of performance to have multiple

instances of PS spread inside the network domain. This way, the processing requirements for a particular PS and the

communication overhead of the SLS selection are reduced. Indeed, in this case, the requests are shared among the PSs and the

links traversed by the messages exchanged during the negotiation are less. Using our approach for SLS selection, the network

can offer the right incentives to the individual users for resource consumption.

It should be noted that there are also certain other issues that are important for the implementation of our approach in a

commercial network domain, such as security (e.g., in the transport and execution of mobile agents, in the transport of user

traffic etc.), accounting and monitoring. We have refrained from dealing with such issues, since we believe that they can be

taken care of by complementing our architecture with existing relevant prototypes and/or commercial products, which should be

integrated with the implementation described in this section.

10. CONCLUSION AND FUTURE WORK

 In this paper we developed and evaluated an efficient SLA selection mechanism for a DiffServ-over-MPLS network domain

within the Application Service Provide (ASP) service model. We also presented a framework for SLA support, negotiation,

policing/shaping and charging. Our approach was implemented in a real network domain providing a video-on-demand service,

demonstrating its features.

An important feature of our approach is the simplicity of user’s procedure for selecting optimal SLS parameters, which has

been presented in full detail. This procedure involves a model of user preferences, expressed by means of a simple yet

informative utility function. This function can be refined and customized by means of learning. This is an interesting direction

for future research, together with the application of our negotiation process for proper SLA selection between network domains.

We assessed our approach by means of simulation experiments. The results indicate that it is incentive compatible, in the sense

that individual optimization by each user (in SLA selection) also leads to improved social welfare. Another important feature of

our approach is the distribution of information enabling the SLA selection; under this distribution, each of the components

involved only possesses those pieces of information for which it has an incentive to store. Finally, although not presented in the

paper, our architecture can be extended so as to cover end-to-end dynamic SLA provision across DiffServ network domains.

Our work can also be employed as a complement to the traffic engineering procedures, by modifying the price per unit of

effective usage for each QoS class, either dynamically (thus balancing the load among the QoS classes), or statically (thus

offering users the incentives to select certain paths instead others). Therefore, our architecture offers to the network provider the

flexibility to apply pricing and/or resource allocation policies for improving efficiency in network operation.

ACKNOWLEDGEMENTS

The authors are grateful to Magda Chatzaki, Costas Courcoubetis, and Vassilios Siris for useful discussions on the subject of the
paper.

REFERENCES

[1] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang and W. Weiss, “An Architecture for Differentiated Services”, IETF
RFC: 2475, December 1998.

[2] J. Wroclawski, “The Use of RSVP with IETF Integrated Services”, IETF RFC: 2210, September 1997.
[3] Y. Bernet, R. Yavatkar, P. Ford, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie, J. Wroclawski and E. Felstaine, “A

Framework For Integrated Services Operation Over DiffServ Networks”, IETF Internet Draft: <draft-ietf-issll-diffserv-
rsvp-05.txt>, May 2000.

[4] R. Braden, L. Zhang, S. Berson, S. Herzog and S.Jamin, “RSVP Functional Specification”, IETF RFC: 2205, September
1997.

[5] R.Guerin, S. Blake and S. Herzog, “Aggregating RSVP-based QoS Requests”, IETF Internet Draft: <draft-guerin-aggreg-
RSVP-00.txt>, November 1997.

[6] K. Nichols, V. Jacobson, L. Zhang, “A Two-bit Differentiated Services Architecture for the Internet”, IETF RFC: 2638,
July 1999.

[7] E. C. Rosen, A. Viswanathan, R. Callon, “Multiprotocol Label Switching Architecture”, IETF Internet Draft: <draft-ietf-
mpls-arch-07.txt>, July 2000.

[8] D. Goderis, Yves T'joens, Christian Jacquenet, George Memenios, George Pavlou, Richard Egan, D. Griffin, P. Georgatsos,
L. Georgiadis and P. Van Heuven. Service Level Specification Semantics, Parameters and negotiation requirements. IETF
Internet Draft: <draft-tequila-sls-01.txt>, June 2001.

[9] H. R. Varian, Microeconomic Analysis - Third Edition, W. W. Norton & Company, New York, 1978 (reprinted 1984,
1992).

[10] S. Shenker. Fundamental Design Issues for the Future Internet. IEEE Journal on Selected Areas in Communications, vol.
13, no. 7, September 1995.

[11] C. Courcoubetis, F. Kelly and R. Weber, “Measurement-based usage charges in communication networks”, Statistical
Laboratory Research Report 1997-19, University of Cambridge, 1999.

[12] C. Courcoubetis and V. Siris, “Managing and Pricing Service Level Agreements for Differentiated Services”, In
Proceedings of IEEE/IFIP IWQoS’99, London, May 31 – June 4, 1999.

[13] D. Durham, J. Boyle, R. Cohen, S. Herzog, R. Rajan and A. Sastry, “The COPS Protocol”, IETF RFC: 2748, January 2000.
[14] S. Herzog, J. Boyle, R. Cohen, D. Durham, R. Rajan and A. Sastry, “COPS Usage for RSVP”, IETF RFC: 2749, January

2000.
[15] Y. Bernet, “Format of the RSVP DCLASS Object”, IETF Internet Draft: <draft-ietf-issll-dclass-01.txt>, October 1999.
[16] F. Le Faucheur, S. Davari, P. Vaananen, R. Krishnan, P. Cheval and J. Heinanen, “MPLS Support of Differentiated

Services”, IETF Internet Draft: <draft-ietf-mpls-diff-ext-07.txt>, March, 2000.

Athanasios G. Papaioannou received his Diploma in Computer Science (1998) from the University of Crete, Heraklio, Greece,
and the M.S. degree (2000) in Networks and Telecommunications from the Computer Science Department of the University of
Crete, Heraklio, Greece. From 1996 to 2000 he was a member of the Telecommunications and Networks Division of the
Institute of Computer Science, Foundation for Research and Technology Hellas (ICS-FORTH), as a research trainee (1996-
1998) and a research assistant (1998-2000). Since May of 2001 he is a PhD student in the Department of Informatics of Athens
University of Economics and Business. His interests are in QoS protocols for telecommunication services, QoS negotiation and
provision in Internet, and accounting and charging for telecommunication services.

Stelios S. Sartzetakis received his Ph.D. degree in Electrical and Computer Engineering from the National Technical
University of Athens, his M.Eng. in Systems and Computer Engineering from Carleton University of Ottawa, Canada, and his
B.Sc. degree in Mathematics from Aristotelian University of Thessaloniki. He heads the telecommunications and networks
laboratory of ICS-FORTH. He participated and coordinated more than ten international research projects. He contributed to the
research in the area of broadband network management, network performance evaluation, QoS and traffic management,
charging and accounting of ATM and Internet traffic and services, and the design of large optical networks. He was principal in
the creation of FORTHnet, the first Internet Service Provider in Greece. Dr. Sartzetakis is also visiting professor at the Dept. of
Computer Science of University of Crete. He has a research record of over twenty-five publications in refereed conferences,
journals and book chapters, and serves as a reviewer and member of several conference committees. He worked for years as an
independent consultant for private, public companies and governments, in Greece and abroad.

George D. Stamoulis received the Diploma in Electrical Engineering (1987, with highest honors) from the National Technical
University of Athens, Greece, and the M.S. (1988) and Ph.D. (1991) degrees in Electrical Engineering from the Massachusetts
Institute of Technology, Cambridge, Massachusetts, USA. From 1991 to 1993 he was a Research Associate with the
Communication Networks group at the NTUA, participating in RACE projects, while serving in the Hellenic Navy, as a lecturer
in the Hellenic Naval Academy. From 1993 to 1995 he was with the Development Programmes Department of INTRACOM, as
a coordinator of RACE projects. From 1995 to 2000 he was an Assistant Professor at the Computer Science Department of the
University of Crete, Heraklion, Greece, and a member of the Telecommunications and Networks Division of the Institute of
Computer Science, Foundation for Research and Technology Hellas (ICS-FORTH). Since the end of 2000 he is an Associate
Professor in the Department of Informatics of Athens University of Economics and Business (AUEB). His research interests are
in network economics, agents for optimal selection of service contracts on behalf of the user, auction mechanisms for bandwidth
and user strategies, and charging for telecommunications services.

LIST OF FIGURES

Figure 1. The service provision scenario.

Figure 2. The communication of QoS requirements and the SLS selection steps in the case of service provision to a single user

in service session.

Figure 3. The indifference curve of parameters (ρ, β) for a given peak rate (shaping delay) and for a specific percentage of traffic

to be conforming.

Figure 4. A possible f(ruser, rnetw) function.

Figure 5. A normalized utility function U with respect to QoS class for elastic (a) and guaranteed (b) services.

Figure 6. The SLS selection process, when the content of the service flow is stored to the ASP’s data center.

Figure 7. The range of the utility functions of guaranteed and elastic users (a), and (b) the various shapes of the charging

function (concave, linear, convex).

Figure 8. The percentage of difference between Unb and Ufair, for the various shapes of the charging function, when E[Wvar] ranges from

30000 to 100000, and Wc= 20000.

Figure 9. The use of COPS protocol to intercept QoS request and employ QoS provision according to the SLS selection process.

Service
portal

UA

1.2.
3.

3.

6.

4. QoS Request

5. negotiation

ASP Data Center

Customer

User

associated

7.

8. Service
Session

Application Service
Provider

PS

Network
Provider

Users ASP

Figure 1.

UA

PS

2b. RSVP
RESV

2a. RSVP
PATH

3., 5.

4.

1. ASP Data Center

6.

User

Receiving Flow

Figure 2.

ρ

β

(ρ*, β*)

t

Indifference Curve

Tangent

Figure 3.

0.85

0.9

0.95

1

0 r_user

f(r
_u

se
r,

r_
ne

tw
)

r_netw

Saddle point

Figure 4.

0

0.25

0.5

0.75

1

1.2

Lowest QoS class Highest QoS class

QoS class(Bandwidth)

Utility for elastic applications

(a)

0

0.25

0.5

0.75

1

1.2

Lowest QoS class Starting QoS class Highest QoS class

QoS class(Bandwidth)

Utility for guaranteed applications

 (b)

Figure 5.

User
Agent

Policy
Server

3. UA informs PS about ruser and the
requested content

5. PS sends eligible offers to UA
[c(x), rnetw, QoS class]

2. PS identifies UA and initiates
negotiation for SLS selection

Number of
offers6. UA selects the SLS

that maximizes NB 7. UA informs PS about the SLS
selection

Information
Directory

4. PS requests and takes
s, t, rnetw per eligible QoS

l

1. Lowest acceptable
QoS class request

User Receiv.
Application

ASP
Data Center

4. PS requests and
takes

h, ρ, β, m and T for
the requested

content

Figure 6.

0

20000

220000

0 0.2 0.4 0.6 0.8 1

QoS class

Utility Elastic Lowest
Utility Guaranteed Lowest

Utility Elastic Highest
Utility Guaranteed Highest

(a)

0

20000

60000

0 0.2 0.4 0.6 0.8 1

QoS class

Linear Charge
Concave Charge
Convex Charge

(b)

Figure 7.

0

50

100

150

200

250

300

350

400

450

500

60000 80000 100000 120000 140000 160000 180000 200000

D
iff

er
en

ce
 %

 b
et

w
ee

n
U

_n
b

an
d

U
_f

ai
r

E[W_var]

Concave Charging

2

4

6

8

10

12

14

16

18

20

60000 80000 100000 120000 140000 160000 180000 200000

D
iff

er
en

ce
 %

 b
et

w
ee

n
U

_n
b

an
d

U
_f

ai
r

E[W_var]

Linear Charging

1.5

2

2.5

3

3.5

4

4.5

60000 80000 100000 120000 140000 160000 180000 200000

D
iff

er
en

ce
 %

 b
et

w
ee

n
U

_n
b

an
d

U
_f

ai
r

E[W_var]

Convex Charging

Figure 8.

RESV

Ingress
Router

PS

COPS
COPS
Server

Policy
Directory

LDAP

Router

Changed RESV

From Receiving
Application

To Sending
Application

Information
Directory

Figure 9.

