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Abstract—In this paper we present a methodology for the design of
congestion control protocols for background data transfers that have
a minimal delay impact on short TCP transfers and compete for a
target share of the leftover average capacity with other background
TCP transfers. We analytically compute the optimal policy and show
that it’s delay performance can be well approximated by a weighted
TCP policy, which maintains a target proportion of TCPs bandwidth
at all times in order to achieve the same share of excess capacity.
The relative approximation error is always less than 17.2% while it
quickly decreases to zero as the number of coexisting background
TCP flows increases.

Next, we consider a general utility-based fairness criterion for
sharing the leftover average capacity, including a penalty term
capturing the delay impact to short flows. The criterion is jointly
optimized over all allocations of excess capacity to background flows
(including TCP ones) on long timescales, and all bandwidth sharing
policies on fast time scales. Even though the delay optimal sharing
policy that solves the above optimization problem does not lead
to distributed congestion control algorithms and more significantly,
requires knowledge of the number of competing background TCP
flows, both problems disappear under the weighted TCP policy. A
distributed weight adjustment policy is considered where, at equi-
librium, the overall performance is nearly optimal, with a quickly
vanishing relative optimality error as the number of background
TCP flows increases. We illustrate the methodology by giving two
examples of congestion control algorithms for background transfers.
Both achieve low delay for short flows relative to TCP, but at
the same time they present strong incentives for adoption against
incumbent low priority solutions in public environments.

I. INTRODUCTION

A key element of the success of the internet architecture is the
ability to accommodate current and future needs of very diverse
applications. Connection rates differ by few orders of magni-
tude, while file transfer sizes vary by more than ten orders of
magnitude. Nevertheless this is achieved using only a handful of
transport protocols, mainly TCP and its variants, which in essence
allocate network bandwidth to flows continuously so as to achieve
fair sharing at all times. Indeed TCP “fairness” or “friendliness”
[1] has become a popular prescription for congestion control
algorithms which intends to ensure equal sharing between flows.

Not all applications value instantaneous bandwidth equally
though. It is valued more by web browsing flows than, say,
background data transfers such as batch software updates. The
former serve interactive tasks where low transfer delays are
important, while the latter are indifferent to small temporal varia-
tions of their bandwidth share, provided the volume downloaded
over a long time period remains the same. Recognizing this,
specialized congestion control algorithms for background data
transfers have recently emerged, e.g., TCP-LP [2], TCP-nice [3],
uTorrent transport protocol [4], LEDBAT [5]. Such protocols are

typically designed to behave as low priority traffic, i.e., opting
for low delay impact on short flows, without considering fairness
relative to other background transfers carried by TCP. Thus, when
they coexist with TCP they are designed to yield giving full
priority to the latter; even if starvation is precluded, the amount
of bandwidth share relative to TCP is commonly unspecified and
arbitrary. This unfairness between TCP and low priority transfers
is manifested in weakened incentives for adoption of such new
protocols instead of the incumbent TCP in public environments.

At the other end of the fairness spectrum, the authors in [6]
give a “long term” twist on the notion of TCP fairness, tailored
for background transfers, by requiring the average throughput
obtained over a long period of time to match that of a TCP flow.
In fact a congestion control algorithm for background transfers
offering this type of fairness is introduced, where the delay of
short flows is strictly decreased compared to the case where TCP
is used instead [6], [7]. A side result of our analysis, suggests
that the delay improvement brought by such flows is never more
than 17.2%, and quickly deteriorates as the number of coexisting
background TCP flows increases. Actually as shown in section II,
this holds for any bandwidth sharing algorithm which is TCP fair
in the long term sense. Thus, significant delay improvements are
not possible unless the fairness requirement is weakened.

In this paper we identify a fundamental tradeoff between long
term fairness between background flows when a subset of these
uses TCP, and the impact on the delay of short TCP flows. We
introduce a design methodology for end-to-end congestion control
algorithms which explicitly accounts for this tradeoff. Similarly
to the framework laid down by Kelly [8] we characterize fairness
as the solution of an optimization problem involving utilities, but
where a cost term is included accounting for the impact on delay
of short flows. The optimization is performed not only over the
long term average throughputs of background flows (including
TCP ones), but also over all bandwidth sharing algorithms -
operating on fast timescales- that attain these long term averages.
Optimization over the latter is necessary in order to achieve
the minimum possible delay costs. Using a linear programming
formulation of a Markovian decision problem, we establish that
the minimum delay is achieved by a threshold policy on the
number of short flows which is not practical to implement and
more significantly, it requires global information.

A basic result of this paper is that the more standard weighted
TCP policy, which maintains a target proportion of TCP’s band-
width over a fast timescale, closely approximates the performance
of the minimum delay policy uniformly well, and the relative
error is quickly decreasing to zero as the number of coexisting
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background TCP flows increases. More importantly, in contrast to
the delay optimal algorithm, the weighted TCP policy allows for
a distributed end-to-end implementation of a weight adjustment
algorithm which approximately solves the overall optimization
problem mentioned in the previous paragraph. Again, the relative
optimality error decreases as the number of background TCP
flows increases. Weighted TCP algorithms have been widely
considered eversince they first appeared in [8], [9] and recently
proposed for background data transfers in [10].

As an illustration of the methodology based on the optimization
problem, in section IV-A we give two oppositely behaving algo-
rithms which correspond to two different choices of the delay
penalty term in the optimization problem. The first algorithm’s
aggressivity ranges between that of TCP and low priority, depend-
ing on whether the delay impact on short flows is low or high
respectively. In contrast, the second algorithm which exhibits the
opposite behavior, attempts at being a competitive alternative to
TCP, except when excess capacity is abundant. Such a behavior
may be favoured by users who are not willing to use a protocol
that obtains a smaller share of the excess capacity than TCP,
unless their throughput is already high.

In [6] the authors propose a utility-based framework con-
cerning long term fairness, considering a model without short
flow arrivals. In section II we introduce a system model with
Poisson arrivals of short flows of exponentially distributed file
sizes at a single bottleneck link, and establish that threshold
policies minimize the delay of short flows. Bounds and formulas
for the minimum delay are also given in the case where the
offered load of short flows is high. In section III we assess
the delay incurred by weighted TCP and compare it with the
optimal. The general optimization problem ivolving the utility-
based fairness criterion including delay costs is considered in
section IV. The generic congestion control algorithm expounding
our methodology is described in the same section, along with
the two example algorithms mentioned above. In V further issues
regarding the use of the methodology are discussed. All proofs
are relegated to section VI.

II. DELAY OPTIMAL BANDWIDTH SHARING

Consider a link of capacity C shared by k + l background
flows of infinite duration, where k of these use TCP while
the rest are referred to as FAIRBAT (fair background traffic)
flows, abbreviated as FB. Here and in the next sections we seek
to optimize the bandwidth sharing policies used by the l FB
flows. Short TCP transfers of files with independent exponentially
distributed file sizes (hence of finite duration), of mean µ−1, arrive
at the link according to a Poisson process with rate λ arrivals per
unit time. Let xn denote the download bandwidth of each TCP
flow when the number of active short TCP flows is n. This number
evolves according to a Markov chain with transition rates:

n→

{
n+ 1 , with rate λ , n ≥ 0 ,

n− 1 , with rate µnxn , n ≥ 1 .
(1)

The load brought in the system by short TCP flows is Cρ, where
ρ = λ/(µC). Clearly, if ρ ≥ 1 the Markov chain is not positive
recurrent regardless of the choice of xn’s; thus from now on ρ < 1
is assumed to hold. The amount of capacity C(1−ρ) leftover by
short TCP flows, is the excess capacity and is consumed in its
entirety by the background flows.

Now, the choice of (xn, n = 0, 1, . . .) determines how (actual,
not excess) capacity is shared between (short or background) TCP
and FB flows, since at state n the TCP flows use bandwidth
(k + n)xn while the FB flows consume the remaining C − (k +
n)xn. The problem we solve in this section is the following:
what is the optimal sharing policy (xn, n = 0, 1, . . .) such that
the average delay experienced by short TCP flows is minized,
under the constraint that the FB flows aggregately get a fraction
f , of the excess capacity? For example, f = l

k+l would require
each background flow to get an equal share of excess capacity
regardless of its type, i.e., TCP or FB. Insofar as we only deal
with the delay impact on short flows, we do not deal with how
the f fraction is attributed between FB flows, until fairness is
considered in section IV.

For any sharing policy which attains a fraction f for FB flows,
let N(k, f, ρ) be the average number of short flows under the
stationary distribution of (1). For future reference, define the delay
impact as

δ(C(1− ρ)f) =
N(k, f, ρ)

Cρ
− 1

C(1− ρ)
, (2)

where the last term is the delay of a unit size short flow if no
background flows existed in the system1, i.e., if k = l = 0. Thus,
δ(C(1− ρ)f) measures the net impact of the background traffic
on the average delay experienced by a short flow of unit size,
if FB flows consume C(1 − ρ)f units of excess capacity. The
minimization of δ(C(1−ρ)f) is equivalent to that of N(k, f, ρ),
so we arrive at the following problem:

N∗(k, f, ρ) = min

∞∑
n=0

nπn (3)

such that: λπn−1 = µnxnπn , n = 1, 2, . . . (4)
∞∑
n=0

πn = 1 (5)

xn ≤
C

k + n
, n = 0, 1, . . . (6)

∞∑
n=0

xnπn =
C(1− ρ)(1− f)

k
(7)

over xn ≥ 0, πn ≥ 0 , n = 0, 1, . . . (8)

Equalities (4) are the local balance equations which the chain
must obey, (6) is the link capacity constraint, and (7) is the
constraint that the FB flows attain the target fraction f .

The following theorem states that the optimal policy has a
structure of a threshold policy on the number of short flows.

Theorem 1 (Structure of the optimal policy). The optimal sharing
policy (xn, n = 0, 1, . . .) satisfies:

If (1− ρ)k ≤ f then

xn =

{
0 , for each n ≤ n∗ ,
C
k+n for each n ≥ n∗ + 2

for some finite nonnegative integer n∗.
If (1− ρ)k > f we have

xn =

{
C[(1−ρ)k−f]
k(1−ρ)k , for n = 0 ,
C
k+n , for each n ≥ 1 .

1In this case xn = C/n and the chain (1) is a M/M/1 queue.
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In words, FB flows get the entire capacity at times where
the number of flows is no more than n∗, while they get zero
bandwidth in states greater than n∗ + 1. When the number of
short TCP flows is exactly n∗ + 1, the FB bandwidth share will
be just enough so that their average throughput satisfies (7), i.e.,

πn∗C + πn∗+1 [C − (k + n∗ + 1)xn∗+1] = C(1− ρ)f .

If (1−ρ)k > f , the FB flows get their target share while n = 0,
so they do not need to compete with short TCP flows.

Interestingly, the optimal threshold n∗ is determined by consid-
ering an associated blocking system, as described in the following
proposition.

Proposition 1 (Determination of optimal threshold). The optimal
threshold n∗ satisfies

E

(
n∗ + k, k,

1− ρ
ρ

)
≤ f < E

(
n∗ + 1 + k, k,

1− ρ
ρ

)
, (9)

where

E(m, q, r) =

(
m
q

)
rq∑q

i=0

(
m
i

)
ri
,m ≥ q ,

is the Engset formula of blocking probability for a loss system
with q cicrcuits and m independent users, each offering traffic
equal to r Erlangs.

Translating a threshold policy into an end-to-end congestion
control algorithm for FB flows is a challenging task. A basic
problem is that the FB flows would need to consume the entire
link capacity when n ≤ n∗. During such periods, the packet
loss rate at the link must considerably increase in order for
TCP flows to decrease their congestion windows significantly.
As a result, packet loss becomes a poor signal of subsequent
upcrossings of n∗. Instead of threshold policies, we consider the
simpler “weighted TCP” sharing policies described in the next
section. Before turning on these, we evaluate the optimal delay
performance in order to compare it with that under weighted TCP
sharing.

The mimimum average number of short TCP flows N∗(k, f, ρ)
is obtained by invoking the following proposition, which holds
for any (not necessarily optimal) threshold policy:

Theorem 2 (Performance of threshold policies). Consider any
threshold policy with

xn =

{
0 , for each n ≤ n0 ,
C
k+n for each n > n0

for finite nonnegative integer n0. The average number of short
TCP flows under this policy at stationarity is

Nn0
=

(k + 1)ρ

1− ρ
+ n0E

(
n0 + k, k,

1− ρ
ρ

)
.

In particular, under the optimal policy, Nn∗ ≤ N∗(k, f, ρ) <
Nn∗+1.

As ρ approaches 1, the associated loss system in Proposition 1
is well approximated by a standard Erlang loss system. This
simplifies the determination of both n∗ and N∗(k, f, ρ):

Corollary 1. As ρ→ 1 the optimal threshold n∗ satisfies n∗(1−
ρ) → af , where af is the unique solution of B(k, af ) = f , and

B(k, a) = ak

k!

(∑k
i=0

ai

i!

)−1

is the Erlang blocking formula for
a system with k circuits under a load of a Erlangs.

Erlang loss approximation
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Fig. 1. Average number of short TCP flows (normalized by ρ/(1 − ρ)) under
the optimal policy, when FB flows get a fraction f of the excess capacity and
coexist with 10 background TCP flows.

Moreover, the average number of flows N∗(k, f, ρ) satisfies
N∗(k, f, ρ)(1− ρ)→ k + 1 + aff , as ρ→ 1.

In Fig. 1, N∗(10, f, ρ) is plotted against the target fraction f
under various load levels ρ, after being normalized by ρ/(1− ρ)
(the average number of short flows if background flows were
absent). Notice the sharp increase to +∞ as f → 1. The solid
curve is the approximation provided by the Erlang loss system in
Corollary 1, which is fairly accurate for ρ > 0.5.

III. A WEIGHTED TCP SHARING POLICY

In this section we show that the optimal delay performance
can be well approximated by a weighted TCP sharing policy.
The relative error of the approximation vanishes as the number
of backgound TCP flows k increases, uniformly over all fractions
f . In particular, numerical evaluation shows that the loss is not
more than 17.2% when k = 1 and quickly decreases in k.

Consider the same system as before but where FB flow i now
takes, at all times, a fixed proportion wi of TCP’s instantaneous
bandwidth. Thus, the l FB flows collectively behave as a set of
W =

∑l
i=1 wi regular (i.e., weight 1) TCP flows, and xn =

C/(k +W + n) at each state n ≥ 1.
If the target fraction of FB flows using weighted TCP sharing

is set to f , W must satisfy W/(k+W ) = f . Thus, by Theorem 2
for n0 = 0 and k+W replacing k, the resulting average number
of short TCP flows is

Nw(k, f, ρ) =
(k +W + 1)ρ

1− ρ
=

ρ

1− ρ

(
k + 1 +

kf

1− f

)
.

(10)
By the definition of optimality, N∗(k, f, ρ) ≤ Nw(k, f, ρ) al-
ways holds. It turns out that Nw(k, f, ρ) closely approximates
N∗(k, f, ρ) for large k, and ρ close to 1. In particular:

Theorem 3 (Optimal delay approximation error of weighted TCP
sharing). The following hold:

1) For every 0 ≤ f < 1,

lim
ρ→1

Nw(k, f, ρ)−N∗(k, f, ρ)

Nw(k, f, ρ)
≤ B(k − 1, af )− f . (11)
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Fig. 2. The relative distance between the delay attained by the weighted TCP
sharing policy and the optimal delay. The error decreases to 0 uniformly over all
FB target fractions f , and the maximum value is approximately 17.2%, attained
when k = 1.

2) For each k ≥ 1 let bk = sup0≤f<1 [B(k − 1, af )− f ], i.e.,
the worst upper bound (11). Then, bk ↓ 0 as k →∞.

Although the upper bound bk suffices to prove uniform con-
vergence of the approximation error to 0, it is not tight. In fact,
b1 = 1 while the maximum approximation error for k = 1 is
3−2

√
2 ≈ 17.2%, attained at f = 2−

√
2 ≈ 60%. Fig. 2 depicts

the relative error in the left hand side of (11), as a function of
f . Note that the error is decreasing in k for most values of f .
Thus, for practical purposes, weighted TCP sharing is a fairly
good approximation to the optimal policy, even for small k.

The above bounds also apply to the performance of the “long
term” TCP fair congestion control algorithms in [6], [7]. As
shown in [6], these algorithms achieve higher throughput than
TCP (over long periods of time) while at the same time they
decrease the delay of short TCP flows. If the number of these
“farsighted” flows is l, then they end up obtaining at least a
l/(k + l) fraction of excess capacity. Now the resulting delay
cannot be lower than that achieved by the optimal sharing policy
with f = l/(k + l). In turn, the bounds above suggest that
this optimal delay is within 17.2% of the delay achieved by
weighted TCP sharing with W = kf/(1 − f) = l, i.e., when
these l flows use (unweighted) TCP. This implies that the delay
decrease brought by farsighted flows cannot be more than 17.2%.
Moreover, from Theorem 3, this improvement vanishes with
higher k.

IV. FAIRNESS AND DELAY TRADEOFF

In the previous sections the bandwidth share f taken by FB
flows was exogenous and fixed. The choice of f determines how
fairly the excess capacity is distributed between background TCP
and FB flows. However the choice should not be entirely based
on bandwidth fairness criteria since as we saw in the previous
sections, the delay experienced by short flows also depends on f
(e.g., see Fig. 1). Thus, it may be desirable to explicitly account
for delay in any fairness considerations. In the sequel we define
fairness for the sharing of the excess capacity C(1 − ρ) using a
utility based approach such as in Kelly [8] but also include the
delay penalty to the short flows.

Let u0 be the utility function associated with each one of the k
(background) TCP flows and ui associated with the i-th FB flow
present in the system. For all i = 0, . . . , l, ui is differentiable,
strictly concave, nonpositive2 and u′i(0+) = +∞. The utilities
model the preferences of background flows on long term average
throughput, and should not be confused with bandwidth sharing
of the actual capacity occuring on a faster timescale (see [8],
[11]). The problem we consider is the following:

max ku0(y0) +

l∑
i=1

ui(yi)−
∫ ∑l

i=1 yi

0

δ(z)2F (δ(z))dz

such that ky0 +

l∑
i=1

yi = C(1− ρ) ,

over y0, . . . , yl ≥ 0 ,

(12)

where yi is the long term average throughput of flow i = 1, . . . , l,
y0 is the corresponding throughput for each background TCP
flow, and F is any nonnegative, nonincreasing function such that
δ2F (δ) is nondecreasing in δ > 0. The last term in the objective
function represents a measure of the total delay cost incurred to
short flows by each unit of FB flow, and the reason it has this
form is because it leads to simple to implement congestion control
algorithms for FB flows which optimize (12) at equilibrium. Yet
it is sufficiently flexible to cover cases of practical interest as seen
in section IV-A.

Recall that the delay impact δ(z) in (2), is determined by the
bandwidth sharing policy on fast timescales, which dictates how
actual capacity is shared when n short flows are present, as in
section II. Hence, in the case of delay optimal sharing where δ(z)
is given by (2) for N∗(k, z/(C(1 − ρ)), ρ), (12) can be thought
as optimizing the sharing of excess capacity, as specified by the
utility functions, including a measure of the delay externalities to
short flows under the assumption that the delay optimal policy is
employed by FB flows. In fact, this policy yields the maximum
possible optimal value of (12), since δ2F (δ) is nondecreasing.

Remark. The best possible optimal value of (12), V∗(k, ρ), over
all bandwidth sharing policies, is attained under the delay optimal
bandwidth sharing policy.

It is beneficial to consider the weighted TCP sharing policy
instead. In this case the impact on delay is (see (10))

δw

(
l∑
i=1

yi

)
=

1

Cρ
Nw

(
k,

∑l
i=1 yi

C(1− ρ)
, ρ

)
− 1

C(1− ρ)
=

1

y0
.

(13)
When δ(z) = δw(z), problem (12) can be solved by a con-
gestion control algorithm operating on two separate timescales.
On the fast timescale, as stated, weighted TCP sharing is used
with weight wi for flow i = 1, . . . , l. As a consequence, the
long term throughputs yi, i = 0, . . . , l with yi = wiy0 and
ky0+

∑l
i=0 yi = C(1−ρ) result, provided the weights wi change

on a slower timescale.
The use of weighted TCP sharing, instead of the optimal policy,

yields a higher delay impact δ
(∑l

i=1 yi

)
than necessary for (12)

to attain V∗(k, ρ). Nevertheless, it is a cost we opt to accept
since a distributed gradient projection solution is then possibe.

2Since the argument of ui is always upper bounded by C(1−ρ) in (12), there
is no loss of generality in assuming ui ≤ 0 since the amended utility functions
ui(y)− ui(C(1− ρ)) generate the same optimal solutions in (12).
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Specifically, the partial derivative of the objective function with
respect to yi is then,

−u′0(y0) + u′i(yi)−
1

y0
2
F

(
1

y0

)
, i = 1, . . . , l , (14)

where we used (13). Notice that (14) depends only on yi, wi, i.e.,
on local information, and requires knowledge of the functions
u′0, F, u

′
i. This is acceptable since in our approach, u′0, F, u

′
i are

parameters in the design space of the algorithm designer (see
section V). Interestingly, the knowledge of the number k of
background TCP flows is not needed.

On a slower timescale -slow enough for reliable estimates of yi
to be available- the weight parameteters wi are locally adjusted
such that the zeros of (14) are found. One way to do this is by
the following algorithm:

ẇi = −u′0
(
yi
wi

)
+ u′i(yi)−

(
wi
yi

)2

F

(
wi
yi

)
, i = 1, . . . , l .

(15)
The next proposition establishes that the value of the objective

function in (12) evaluated at the equilibrium w1, . . . , wl is close to
the value V∗(k, ρ) of (12) under the optimal sharing policy. In fact,
their relative distance vanishes as the number k of background
TCP flows increases, and ρ is high.

Theorem 4 (Approximation error of weighted TCP sharing). Let
k ≥ 1. Then, there are unique equilibrium weights w1, . . . , wl
for algorithm (15) under the weighted TCP sharing policy.
The resulting equilibrium throughputs yw

1 , . . . , y
w
l are the unique

maximizers of (12) with δ(z) = δw(z).
Let Vw(k, ρ) be the corresponding optimal value. If C(1−ρ) re-

mains constant3 in order for the excess capacity sharing problem
to make sense as ρ→ 1, then for every k ≥ 1,

lim sup
ρ→1

∣∣∣∣V∗(k, ρ)− Vw(k, ρ)

V∗(k, ρ)

∣∣∣∣ ≤ ak
1− ak

,

where ak = min(2bk, 1) (see Theorem 3).
Therefore by Theorem 3, the weighted TCP sharing policy is

asymptotically optimal as k →∞.

A. Two example algorithms

In this section we apply the above methodology and devise two
algorithms which make sense in (different) practical situations.

Consider problem (12) with ui(y) = log y − log(C(1 − ρ))
for every y > 0, i = 0, . . . , l. If delay was not important, i.e.,
F (δ) = 0, the optimal allocation would be the one where each
background flow gets an equal share of excess capacity. When
F (δ) > 0, (12) yields an allocation which deviates from equal
sharing only as long as this brings a sufficient delay decrease.

Now, assume a delay penalty with F (δ) = γ for every δ > 0,
where γ > 0 is a constant. Setting the partial derivatives (14)
equal to zero yields y0/yi = 1 + γy0

−1 for all i = 1, . . . , l. That
is, the resulting type of FB flow is always less aggressive than
TCP. Notice also that the delay impact on short flows is y0

−1.
Recalling that the delay impact on short flows is y0

−1, notice that
the larger this impact is, the less aggressive the FB flows become
relative to TCP, thus effectively behaving as low priority traffic.
On the other hand, the smaller y0

−1 gets, the more similar to
TCP the FB flows behave. Indeed, there is little reason in treating

3More generally, we could assume C(1−ρ) converges to a constant as ρ→ 1,
at the expense of having to use more symbols.

N FB + 1 TCP

N FB(opt) + 1 TCP
N+1 TCP
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Fig. 3. Impact of the number and type of background flows on the delay of short
TCP flows when N background flows are added. (FB flows use the first algorithm
of section IV-A, FB(opt) use the optimal solution of (12) with F (δ) = γ.)

background data as low priority unless their impact on delay is
significant.

In Fig. 3 the delay impact δ is depicted, as the result of adding
N background flows, in a numerical example with C(1 − ρ) =
10, γ = 1. TCP flows cause a linear delay increase, while in
the case of FB the delay increases more slowly. FB(opt) flows
correspond to the optimal solution of (12) under the optimal
sharing policy of section II. Notice that the delay impact of FB
essentially coincides with the optimal.

In Fig. 4 the equilibrium bandwidth share of each FB flow
relative to that of a background TCP flow is depicted. When the
number of background flows is low, the delay penalty is small
and so the equilibrium shares of FB and TCP flows are nearly
equal, i.e., fair. As the number of background flows increases and
the delay penalty becomes more dominant, fairness is traded for
lower delay cost. Notice that the optimal algorithm yields slightly
more fair shares with the same delays, as seen in Fig. 3, when a
single background TCP exists in the system.

To obtain the second algorithm, consider F (δ) = γδ−2.
Setting (14) equal to zero yields yi = y0/(1 + γy0) for all
i = 1, . . . , l where again, the FB flows are always less aggressive
than TCP but, in constrast to the first algorithm, they behave as
low priority traffic only when y0 is high. When y0 is small, then
yi ≈ y0. Such a behavior may be favoured by users who are not
willing to use a protocol that obtains a smaller share of the excess
capacity than TCP, unless their throughput is already high.

In Fig. 5 the delay impact of the second algorithm is depicted,
for the same parameters C(1−ρ), γ as before. For a small number
of background flows, the impact is minimal since FB flows receive
a sufficiently high throughput. As more background flows join the
system and the excess capacity is divided among a larger number
of flows, the FB flows become more aggressive as seen in Fig. 6.
As a consequence, the delay starts to increase in a linear fashion,
similarly to the case where all flows use TCP. Notice that in this
algorithm, the delay penalty term in (12) is the same for both FB
and FB(opt). Thus, the equilibrium shares of FB and FB(opt),
relative to TCP, coincide. By optimality, FB(opt) yields lower
delays than FB, but as seen in Fig. 5 the error between the two
is insignificant. Specifically, the error is much smaller than the
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Fig. 4. Equilibrium bandwidth share of an FB (or FB(opt)) flow relative to that
of a background TCP flow, i.e., the yi/y0 ratio. For small N , the delay penalty
is low and so the equilibrium shares of FB and TCP flows are nearly equal, i.e.,
fair. (FB flows use the first algorithm of section IV-A, FB(opt) use the optimal
solution of (12) with F (δ) = γ.)
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Fig. 5. Impact of the number and type of background flows on the delay of
short TCP flows. (FB flows use the second algorithm of section IV-A, FB(opt)
use the optimal solution of (12) with F (δ) = γδ−2.)

17.2% upper bound found numerically in section III.

V. DISCUSSION

The design methodology proposed in this paper is based on an
explicit specification of the tradeoff between long term fairness
and the delay impact to short flows, such as the one given by the
optimization problem (12). Presumably, the algorithm designer
decides on the fair allocation of excess capacity between FB and
background TCP flows, in the absence of delay costs, by first
choosing u0, ui. This is what we did for the two algorithms in
section IV-A, where fairness was defined as equal sharing of the
excess capacity. This led us to choose ui = u0, while the choice
of a logarithmic form was made to yield simple expressions for
(u′i)

−1. The optimality conditions (obtained by equating (14) with
zero) give a relation between y0, yi and δ2F (δ), where δ is the
delay impact. Now, the designer chooses F in order for yi, the
TCP share y0 and the delay impact satisfy a desired relation.
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Fig. 6. Equilibrium bandwidth share of an FB (or FB(opt)) flow relative to that of
a background TCP flow, i.e., the yi/y0 ratio. (FB flows use the second algorithm
of section IV-A, FB(opt) use the optimal solution of (12) with F (δ) = γδ−2.)

Notice that fairness is defined with respect to TCP share y0

(through u′0), and so the latter becomes a kind of common
currency, generalizing the use of TCP friendliness. This common
currency makes possible the coexistence of FB flows with differ-
ent utilities ui and the optimality of the distributed algorithm (15)
under weighted TCP sharing. Furthermore, under weighted TCP,
the delay impact is given solely in terms of y0, a value which is
known to all FB flows through y0 = yi/wi.

Whereas in the utility-based framework of Kelly [8], [11] the
shadow price of the resource constraint is signalled to the users
residing at the endpoints, through congestion indications coming
from the network (e.g., packet loss), in our case the function
F must be known (in order for the marginal cost δ2F (δ) to be
computable) by each FB flow, since the delay cost is a choice of
the algorithm designer. It is interesting to note that in certain
cases, the information about the delay cost can be implicitly
signalled by the network. As an example, assume each packet
loss incurs a cost β > 0 to each FB flow, and let pn be the
packet loss probability when n short flows are present. By the
TCP square root formula [12], xn = 1

T

√
2π
pn

where T is the
round-trip time, and xn = C/(k + W + n) is the TCP share at
state n. Thus, the average4 loss rate for FB flow i is

wiE(pnxn) =
wi2π

T 2

(
k +W

C
+

(k +W + 1)ρ

C(1− ρ)

)
≈ 2πwi
T 2y0

,

for C(1 − ρ) posessing a positive limit as ρ ↑ 1. Since the
throughput of flow i is wiy0, the average price per unit of
throughput is β2π/(T 2y0

2). Now if FB flows adjust their weight
according to ẇi = u′i(yi) − β2π/(T 2y2

0) such that they attempt
to maximize their surplus, are in essense solving (12) for e.g.,
u0(y) = −βπ/(T 2y) and F (δ) = βπ/T 2 for all δ.

In the future we plan to explore more the relation between the
average congestion indications obtained in the fast timescales, and
the implicit delay cost functional.

4The expectation is with respect to the stationary distribution πn arising from
the choice of the xn’s, in (1).
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VI. PROOFS

A. Proof of Theorem 1

Consider the case (1 − ρ)k > f first. If xn, n = 0, 1, . . . are
defined as in Theorem 1, FB flows do not affect the dynamics of
the Markov chain. Hence, the stationary distribution is given by
Lemma 4 for n0 = 0. In fact, the average bandwidth constraint (7)
is readily shown to hold for this stationary distribution. Since the
average number of TCP flows is minimized by setting xn at their
maximum value C

k+n for each n = 1, . . ., we conclude that the
allocations xn, n = 0, 1, . . . are optimal.

For the remainder of this section we consider the case (1 −
ρ)k ≤ f .

Lemma 1. If (1− ρ)k ≤ f then x0 = 0.

Proof: Assume first that xn = C
k+n for all n ≥ 1. Then the

stationary distribution is given by Lemma 4 for n0 = 0, and

π0x0 +

∞∑
n=1

πnxn = (1− ρ)k+1x0 +
C(1− ρ)− C(1− ρ)k+1

k
.

Plugging this into (7) yields f = (1− ρ)k(1− kx0/C) which it
does not hold unless x0 = 0.

Now assume that there exists n ≥ 1 for which the constraint (6)
is not met. If x0 > 0 then we could decrease x0 and increase xn
such that (7) remains true. Notice though, that the increase of
xn does decrease the average number of short TCP flows, while
the increase of x0 does not have any effect whatsoever. Thus, the
optimal allocation x0 must be zero.

We now transform the optimization problem into an equivalent
convex problem. For each n ≥ 0 and xn, πn which satisfy (4)-(8),
define

π̄n = xnπn
k

C(1− ρ)(1− f)
. (16)

The following holds:

Lemma 2. The numbers π̄n, n = 0, 1, . . . as defined in (16)
satisfy the constraints

∞∑
n=0

π̄n = 1 , (17)

ρπ̄n ≤
n+ 1

k + n
π̄n+1 , n = 0, 1, . . . , (18)

∞∑
n=0

nπ̄n =
ρk

(1− ρ)(1− f)
, (19)

π̄n ≥ 0 , n = 0, 1, . . . (20)

Conversely, for any π̄n, n = 0, 1, . . . satisfying (17)-(20) there
exist unique πn, xn, n = 0, 1, . . . for which (4)-(8) and (16) hold.

Proof: Summing (16) over n = 0, 1, . . . and using (7)
yields (17). (18) follows by mutliplying both sides of (6) by πn
and utilizing (4),(16). Since ρ < 1, the average rate of departures
must equal λ, that is,

∞∑
n=0

µnxnπn = λ⇔
∞∑
n=0

nπ̄n =
ρk

(1− ρ)(1− f)
,

which proves (19).

To show the converse part, define

πn =
(n+ 1)(1− ρ)(1− f)

ρk
π̄n+1

and xn =

{
Cρπ̄n

(n+1)π̄n+1
, if π̄n+1 > 0 ,

0 , if π̄n+1 = 0 ,
for each n = 0, 1, . . .

Now, (4) follows by noting that nπ̄n

(n+1)π̄n+1
= πn−1

πn
and substitu-

tion in the definition of xn above. Also,
∞∑
n=0

πn =

∞∑
n=0

(n+ 1)(1− ρ)(1− f)

ρk
π̄n+1

=

∞∑
n=0

n(1− ρ)(1− f)

ρk
π̄n = 1 ,

by making use of (17). (6) follows by (18) and the definition of
xn above, while (7) follows by replacing πn, xn in (7).

This deals with existence; to establish uniqueness note that
any collection of πn, xn, n = 0, 1, . . . which satisfy (16) and (4)
defines πn uniquely by the latter equation. Thus, xn is defined
uniquely by (16) for every n ≥ 1, while x0 is determined by (7).

Now, if we multiply both sides of (4) by n− 1 and sum over
n = 1, 2, . . . we get

λ

∞∑
n=1

(n− 1)πn−1 =
µC(1− ρ)(1− f)

k

( ∞∑
n=1

n2π̄n −
∞∑
n=1

nπ̄n

)

=
µC(1− ρ)(1− f)

k

∞∑
n=1

n2π̄n − λ ,

when (19) holds. Thus, the minimization of the objective in (3)
is equivalent to that of the second moment of the distribution
π̄n, n = 0, 1, . . ., when (19) holds. Combining this with Lemma 2
leads to the following equivalent formulation:

Minimize
∞∑
n=0

n2π̄n over (π̄n, n = 0, 1, . . .)

such that (17)-(20) hold. (21)

The Lagrangian for this problem is

∞∑
n=0

n2π̄n+ξ

( ∞∑
n=0

π̄n − 1

)
+ψ

( ∞∑
n=0

nπ̄n −
ρk

(1− ρ)(1− f)

)

+

∞∑
n=0

ζn

(
ρπ̄n −

n+ 1

k + n
π̄n+1

)
=

∞∑
n=0

(
n2 + ξ + ψn+ ρζn −

n

k + n− 1
ζn−1

)
π̄n

− ξ − ψ ρk

(1− ρ)(1− f)
, (22)

where ψ, ξ ∈ R, ζ−1 = 0, ζ0, ζ1, . . . ∈ R+ are the Lagrange
multipliers.

By Theorem 1 of section 8.3 in [13], there exist values for these
multipliers, for which the infimum of (22) over π̄n ≥ 0, n =
0, 1, . . . is attained, and coincides with the minimizer of (21).
By abusing notation, denote the corresponding values again by
ψ, ξ, ζn, and let π̄n, n = 0, 1, . . . be the minimizer of (21). Also,
note by complementary slackness that

ζn

(
ρπ̄n −

n+ 1

k + n
π̄n+1

)
= 0 , for each n = 0, 1, . . . (23)
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Define n∗ = max {m ≥ 0 : π̄n = 0 , for all n ≤ m}, which is
well-defined since π̄n = 0 by Lemma 1. For such n∗ the following
holds:

Lemma 3. ζn > 0 for all n with n ≥ n∗ + 2.

Proof: Since the infimum of (22) is attained, we have

ρζn ≥
n

k + n− 1
ζn−1−n2−ψn− ξ , for each n = 0, 1, . . . ,

(24)
where the inequality becomes equality when π̄n > 0.

By the definition of n∗ we have π̄n∗+1 > 0, so (18) implies
π̄n > 0 for all n ≥ n∗ + 1. Thus (24) holds with equality for all
n ≥ n∗ + 1. Moreover, ρπ̄n∗ <

n+1
k+n π̄n∗+1, so ζn∗ = 0. Thus,

− (n∗ + 1)2 − ψ(n∗ + 1)− ξ = ρζn∗+1 ≥ 0

and − n2
∗ − ψn∗ − ξ ≤ −

n∗
k + n∗ − 1

ζn∗−1 ≤ 0 .

Therefore the smallest root of the quadratic x 7→ −x2 − ψx− ξ
lies in [n∗, n∗ + 1], while the other is greater than or equal to
n∗ + 1. Let n ≥ n∗ + 2 and assume −n2 − ψn − ξ ≤ 0. Then
−(n+ 1)2 − ψ(n+ 1)− ξ < 0, and (24) gives

0 > −(n+ 1)2 − ψ(n+ 1)− ξ ≥ n+ 1

k + n
ζn ,

i.e., ζn > 0.
If on the other hand, −n2 − ψn − ξ > 0, then (24) implies

ζn > 0 again.
By the lemma above, the complementary slackness condi-

tion (23) implies ρπ̄n = n+1
k+n π̄n+1 for all n ≥ n0 + 2, which

in turn gives xn = C/(k + n).

B. Proof of Proposition 1

Lemma 4. The stationary distribution of the number of short
TCP flows is

πn =


(n+k

k )(1−ρ)k+1ρn∑k
i=0 (n0+k

i )(1−ρ)iρn0+k−i
, n ≥ n0 ,

0 , n < n0 .

for the threshold policy with threshold n0. In particular, πn =
P (X = n|X ≥ n0), where X is the sum of k + 1 independent
geometric random variables with parameter 1− ρ.

Proof: Let X be the sum of k + 1 independent geometric
distributions with parameter 1− ρ. Then,

P (X = n) =

(
n+ k

k

)
(1− ρ)k+1ρn ,

for every n = 0, 1, . . .. This distribution is readily shown to satisfy
the detailed balance equations

P (X = n)ρ = P (X = n+ 1)
n+ 1

n+ 1 + k
, n = 0, 1, . . . ,

which correspond to a system with the threshold set to zero. Since
the Markov chain is reversible, the stationary distribution for the
case n0 > 0 is πn = P (X = n|X ≥ n0), i.e.,

πn =

(
n+k
k

)
(1− ρ)k+1ρn∑k

i=0

(
n0+k
i

)
(1− ρ)iρn0+k−i

, n = n0, n0 + 1, . . . (25)

and 0 for n < n0.

Consider the threshold policies with threshold value n0 but
where xn0+1 is allowed to vary within

(
0, C

n0+1+k

]
. We obtain

an explicit expression for the throughput

Cπn0 + πn0+1 [C − (n0 + k + 1)xn0+1] (26)

of FB flows as a function of xn0+1. Applying Lemma 4 to the
system with threshold n0 + 1 yields

πn0+1∑∞
i=n0+1 πi

= (1− ρ)E

(
n0 + k + 1, k,

1− ρ
ρ

)
, (27)

i.e., πn0+1 = (1 − πn0
)d where d is the expression in the right

hand side of (27) This together with local balance between states
n0 and n0 + 1 give,

πn0
=

λd

(n0 + 1)xn0+1µd+ λ
,

and πn0+1 =
(n0 + 1)xn0+1µd

(n0 + 1)xn0+1µd+ λ
, (28)

and substitution in (26) yields

d+
dµ(n0 + 1)xn0+1

dµ(n0 + 1)xn0+1 + λ

(
1− ρ− d− kρ

n0 + 1

)
. (29)

For xn0+1 = 0, this expression is greater than (1 −
ρ)E

(
n0 + k, k, 1−ρ

ρ

)
, i.e., the value obtained at xn0

= C/(n0 +

1+k), by Lemma 4. Thus (29) is a decreasing function of xn0+1,
so there exists unique threshold n∗ which satisfies (9).

C. Proof of Theorem 2
The average number of short TCP flows at stationarity is, by

Lemma 4,

E(X|X ≥ n0) = n0 − 1 +

∞∑
n=n0

P (X ≥ n|X ≥ n0) (30)

= n0 − 1 +

∑k
i=0Gi

P (X ≥ n0)
, (31)

where Gi =
∑∞
n=n0

(
n+k
i

)
(1− ρ)iρn+k−i.

Now,

Gi =

∞∑
n=n0

(
n+ k

i

)
(1− ρ)i(−ρn+1+k−i + ρn+k−i)

+

∞∑
n=n0

(
n+ k

i

)
(1− ρ)iρn+1+k−i

=

(
n0 + k

i

)
(1− ρ)iρn0+k−i

+

∞∑
n=n0

[(
n+ k + 1

i

)
−
(
n+ k

i

)]
(1− ρ)iρn+1+k−i

+

∞∑
n=n0

(
n+ k

i

)
(1− ρ)iρn+1+k−i

=

(
n0 + k

i

)
(1− ρ)iρn0+k−i + (1− ρ)Gi−1 + ρGi ,

where summation by parts is used to get the second equality.
Thus,

Gi =
1

1− ρ

(
n0 + k

i

)
(1− ρ)iρn0+k−i +Gi−1

=
1

1− ρ

i∑
j=0

(
n0 + k

j

)
(1− ρ)jρn0+k−j ,
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and so,
k∑
i=0

Gi =

k∑
i=0

k + 1− i
1− ρ

(
n0 + k

i

)
(1− ρ)iρn0+k−i .

Plugging this back to (30) gives

E(X|X ≥ n0) = n0 − 1 +
k + 1

1− ρ

−
(n0 + k)

∑k−1
i=0

(
n0+k−1

i

)
(1− ρ)iρn0+k−1−i∑k

i=0

(
n0+k
i

)
(1− ρ)iρn0+k−i

=
(k + 1)ρ

1− ρ
+ n0E

(
n0 + k, k,

1− ρ
ρ

)
,

after some algebra.

D. Proof of Corollary 1

Consider a sequence of threshold policies indexed by ρ for
which the threshold level nρ satisfies nρ(1 − ρ) → a as ρ → 1.
Since the number of users nρ+k, in the loss system described in
Proposition 1, grows with ρ while the total load is kept fixed at
a, the call arrival sequence is approximated by a Poisson process
with rate a. Hence,

E

(
nρ + k, k,

1− ρ
ρ

)
→ B(k, a) , as ρ→ 1 ,

Observe that since B(k, 0) = 0, B(k,+∞) = 1, and B(k, a) is
increasing in a, there is a unique af for which B(k, af ) = f
holds. Thus, n∗(1− ρ)→ af as ρ→ 1, and both the lower and
upper bounds in Proposition 1 converge to B(k, af ).

E. Proof of Theorem 3

lim
ρ→1

Nw(k, f, ρ)−N∗(k, f, ρ)

Nw(k, f, ρ)
≤

kf
1−f − aff
k + kf

1−f

=
1− f
k

af (B(k − 1, af )− f) ≤ B(k − 1, af )− f .

by using the identity kB(k, af )/(1−B(k, af )) = afB(k−1, af )
and the definition B(k, af ) = f . The last step follows by noting
that the average number of ongoing calls af (1 − B(k, af )), in
the associated loss system, is less than the number of circuits k.

To show the second part, first notice that
sup0≤f≤1 [B(k − 1, af )− f ] = supa≥0 [B(k − 1, a)−B(k, a)],
and for every a ≥ 0, F (k, a) = B(k − 1, a) − B(k, a) → 0
as k ↑ ∞. Moreover, since B(k, a) concave in k [14], F (k, a)
is nonincreasing in k, and so F (k, a) ↓ 0 as k ↑ ∞. Thus the
convergence is uniform over intervals of the form [0, a0]. It is
uniform over the entire positive axis if supk≥k0,a≥a0 F (k, a)
can be made arbitrarily small by some choice of k0, a0. But
this follows since for every sequence ak ↑ +∞ we have
F (k, ak) ≤ F (k0, ak) for any k ≥ k0, and F (k0, ak) → 0 as
k ↑ ∞.

F. Proof of Theorem 4

Since the objective function is strictly concave and the param-
eters range over a compact set, there exists unique maximizer
yw = (yw

0 , . . . , y
w
l ) and the optimality conditions obtained by

equating (14) with zero, yield yw as their unique solution. Since
u′i(0+) = +∞ and k ≥ 1, we have yw

i > 0 for each i = 0, . . . , l.

Hence, there are unique weights wi, i = 1, . . . , l with yw
i = wiy

w
0

which are also the unique weights satisfying ẇi = 0 in (15).
Now, for every y = (y0, . . . , yl) ∈ Rl+1

+ let U(y) − D(y) be
the decomposition of the objective in (12) into the utility term
U(y) and the delay penalty term D(y). For δ∗ given by (2) with
N∗(k, f, ρ), let D∗(y),Dw(y) be the resulting delay penalties
arising from δ∗ and δw, respectively. First, notice that for any
0 ≤ z < C(1− ρ) we have

δw(z)
2
F (δw(z))−δ∗(z)2F (δ∗(z)) ≤ (δw(z)2−δ∗(z)2)F (δw(z))

≤ (δw(z)− δ∗(z))2δw(z)F (δw(z))

≤ 2bkδw(z)2F (δw(z)) ,

where we used the monotonicity of F , and (11) in the final step.
Thus, Dw(y)−D∗(y) ≤ 2bkDw(y), where ak = min(2bk, 1) for
any k ≥ 1. Now let y∗ ∈ Rl+1

+ be the maximizer of (12) under
the optimal bandwidth sharing policy and notice

V∗(k, ρ) = U(y∗)−D∗(y∗)
≤ akU(y∗) + (1− ak) [U(y∗)−Dw(y∗)]

≤ akU(y∗) + (1− ak)Vw(k, ρ) ,

where we have used (11), and so (1−ak) [V∗(k, ρ)− Vw(k, ρ)] ≤
akD∗(y∗), i.e.,∣∣∣∣V∗(k, ρ)− Vw(k, ρ)

V∗(k, ρ)

∣∣∣∣ ≤ ak
1− ak

D∗(y∗)
|V∗(k, ρ)|

≤ ak
1− ak

. (32)

The last inequality follows because U(y∗) ≤ 0.
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