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Abstract—We study flow optimization in cognitive Wireless
Mesh Networks (WMN) that lease bandwidth from a collocated
cellular network (CN). We develop a distributed mechanism that
such WMNs can use to optimize their traffic given their own
utilities and costs and the costs that the CN is charging for the
use of its channels. We evaluate the mechanism in a synthetic
scenario using the topology of an actual deployed WMN and time-
varying traffic requirements induced from actual vehicle mobility
traces. Simulations show that the mechanism can track well the
changes in the problem parameters, continuously keeping close
to the optimum operation point.

I. INTRODUCTION

Wireless Mesh Networks (WMN) have recently become a
very popular type of infrastructure, serving a multitude of
applications such the offering of alternative IP interconnection,
supporting vehicular networks, etc. However, in WMNs, a
number of factors (use of the ISM band, multihop transmis-
sions, bulky data, etc.) contribute to an often severe bandwidth
shortage. One way of alleviating the bandwidth shortage is
to adopt a cognitive network approach [1] under which the
WMN uses bandwidth that is available to nearby cellular
networks (CNs), whenever it happens to be underutilized by
them. Indeed, the fluctuating pattern of cellular type traffic,
where voice predominates, implies that, at least for parts of
the day and most of the night, large portions of the bandwidth
remain unused [2].

In Section II we define a system model that consists of a
WMN and a set of CN channels that are available for lease.
The topology and the technology used are such, that for each
CN channel there is a subset of WMN links that will interfere
with the operation of that channel, if traffic passes through
them. Furthermore, each WMN link may interfere with more
than one channel. Each WMN node derives a utility value
by inserting flow in the network if it is a source (or removing
flow from the network, if it is a sink). This utility is a concave
function of the traffic inserted (or removed). Each channel is
available for use but for a cost which is a convex function of
its utilization by the WMN. Finally, the use of each WMN
link is also subject to some convex cost. We show that the
point of socially optimal operation, that maximizes the sum
of the utilities of all nodes, minus the costs of all channels
and links, can be found by solving a convex program.

In Section III we show that this problem can be solved
through a distributed mechanism executed by agents located
throughput the network. The mechanism provably establishes

the point of optimal operation when the problem parameters do
not change. For the case where the parameters of the problem
change, for example due to mesh client mobility and/or the
fluctuating availability of the cellular bandwidth, we introduce
a properly modified version of the mechanism that produces
traffic flows that track closely the time-varying optimal one.

In Section IV we perform a preliminary evaluation of the
mechanism in a synthetic scenario using the topology of
the Funkfeuer WMN [3] currently deployed in Vienna and
when the traffic that the WMN must support originates from
vehicular mesh clients whose mobility is based on actual
vehicular mobility traces collected from the same city. We
show that the distributed mechanism succeeds in keeping the
network close to its optimum operation point, despite the fact
that this is constantly changing due to the mobility of the
clients. In Section V we present an overview of related work
in the field of cognitive WMNs. We conclude in Section VI.

II. SYSTEM MODEL

We model the WMN in terms of a set N of N nodes,
indexed by n = 1, . . . , N and a set L of L directed links,
indexed by l = 1, . . . , L. Let s(l) ∈ N be the node from
which the link starts, i.e., the transmitter, and e(l) ∈ N be
the node where the link ends, i.e., the receiver. There may be
multiple links starting and ending at the same pair of nodes.

The flow of data packets along link l, measured in bps,
is denoted by xl. Let x = (xl : l ∈ L) be the flow
vector. We require 0 ≤ xl ≤ xmax

l . The value xmax
l is a

capacity constraint for that link and depends on the transceiver
technology used, and perhaps also arbitrary constraints set by
the modeler. Let xmax = (xmax

l : l ∈ L). Based on the above,
0L ≤ x ≤ xmax, componentwise, where 0L is a L-sized
vector with zero components. We assume, for each link l, a
convex link cost function hl(xl), which models the cost of
having flow xl through link l. The link cost function can model
a variety of costs, for example energy costs.

Let
sn =

∑
l∈L:n=s(l)

xl −
∑

l∈L:n=e(l)

xl

be the divergence of the flow vector at node n. The divergence
expresses the rate, in bps, with which the node inserts data in
the network (if positive) or removes data from the network (if
negative) so that information is conserved, given the flows of
traffic along ingress and egress links. Let s = (sn : n ∈ N )



be the divergence vector. We assume that the divergence is
subject to optimization, but must stay within an upper and a
lower bound, i.e., smin

n ≤ sn ≤ smax
n . These bounds may be

used to express restrictions on the technology or restrict the
behavior of the nodes. Let smax = (smax

n : n ∈ N ), smin =
(smin
n : n ∈ N ). Based on the above, smin ≤ s ≤ smax. For

each node n, there is a concave utility function Un(sn) that
expresses the utility the node derives by having divergence sn.

We define a channel to be the whole bandwidth used by a
specific cell of a nearby CN. Therefore, there is one channel
for each cell, and so in the following the words channel
and cell will often be used interchangeably. Let C be the
set of channels, indexed by c = 1, . . . , C. Let rc be the
reservation level of channel c, and r = (rc : c ∈ C) be
the reservation vector. Reservation levels are unitless, and
express which fraction (of time, frequency, etc., depending on
the technology used) of the respective channel is occupied by
the traffic of the WMN links. Each reservation level rc must be
nonnegative and less than a maximum value rmax

c that specifies
the maximum fraction of the channel the CN is prepared to
lease. Let rmax = (rmax

c : c ∈ C), so that 0C ≤ r ≤ rmax,
where 0C is a C-sized vector with zero components. For each
of the C channels, we define a convex channel cost function
fc(rc). The channel cost function combines two terms: the cost
incurred to the CN by not having the channel available, which
must be offset by the WMN, and also a term corresponding
to the profit the CN expects.

When a node transmits over a link, we expect that the
operation of possibly more than one channel will be interfered
with, and each of these must be reserved. In addition, we
expect that each channel can possibly be interfered with by
more than one link. This arbitrary coupling between links and
channels is modeled as follows: let Rcl ≥ 0, the reservation
coefficient for channel c and link l. Let the reservation matrix
R = {Rcl} of size C × L. We require that

r = Rx⇔ rc =
L∑
l=1

Rclxl, ∀c ∈ C.

The precise value of the coefficients will depend on the
topology, the transceiver technology used, and various other
aspects of the hardware involved. Establishing the precise
value for the coefficients goes beyond the scope of this work,
however we stress that our model can capture a large variety
of situations.

We can now specify our flow optimization problem:

Problem 1: Utility minus Costs (U-C) Maximization

maximize:
N∑
n=1

Un(sn)−
C∑
c=1

fc(rc)−
L∑
l=1

hl(xl), (1)

subject to: sn =
∑

l∈L:n=s(l)

xl −
∑

l∈L:n=e(l)

xl, ∀n ∈ N , (2)

rc =
∑L
l=1Rclxl, ∀c ∈ C, (3)

0 ≤ xl ≤ xmax
l , ∀l ∈ L, (4)

smin
n ≤ sn ≤ smax

n , ∀n ∈ N , (5)
0 ≤ rc ≤ rmax

c , ∀c ∈ C. (6)

Formally, the optimization variables are x, s, and r. How-
ever, due to the existence of the equality constraints, one may
adopt the view that the flows x are the only ones subject to
optimization, and they affect the objective function through
the ”auxiliary” variables s, r.

The WMN must solve this problem in order to maximize
the profit it makes out of transporting traffic minus the costs
it pays to lease the channels and use the links (expression
(1)), subject to the constraints that information is conserved
(constraints (2)), the proper amounts of reservations are made
(constraints (3)), and that flows, divergences, and reservation
levels are between set bounds (constraints (4), (5), and (6).)

Note that the optimization problem is convex, as the utilities
have been assumed concave, the channel and link costs convex,
and all constraints are linear. Furthermore, the optimization
function is separable, therefore this is a monotropic program,
for which very efficient centralized solution methods exist [4].

Also note that we cast our problem as a single commodity
optimization problem. Therefore, each packet inserted in the
network does not have a specific destination, but may be
received by any node whose divergence can be negative. This
assumption makes sense for WMNs, where typically nodes are
interested in communicating with any mesh router connected
to the Internet, and the choice of mesh router is not important.
However, the multicommodity case can also be formulated in
a similar manner.

III. DISTRIBUTED FLOW OPTIMIZATION USING DUALITY

In this section we introduce a mechanism for solving
Problem I that is distributed and can also be used to track
the problem as the problem parameters change. To simplify
the exposition, we now make the assumption that the utility
function is strictly concave, and that both the link and channel
cost functions are strictly convex [5]. The extension to the
non-strictly convex case is straightforward, but is postponed
for future work.

A. The dual problem

First, let us hypothetically assume that nodes are allowed to
violate the data conservation constraint (2) provided they sell
any excess traffic that gets accumulated at them at a node price
λn ∈ R, for node n, or buy any traffic they lack at that same
price. This transaction is done with an external, hypothetical
market. The resulting profit (or loss) is added to the objective.
Let λ = (λn : n ∈ N ) be the node price vector.

Secondly, let us assume that the network is allowed to
violate constraint (3), and so reserve more or less channel
bandwidth than the bandwidth needed. However, any excess,
unused bandwidth must be sold off to the external market for
a channel price µc ∈ R, for channel c, and any missing band-
width must be bought at the same price. The resulting profit



(or loss) is also added to the objective. Let µ = (µc : c ∈ C)
be the channel price vector.

We define the Lagrangian as the modified objective:

L(x, s, r; λ,µ)

,
N∑
n=1

Un(sn)−
C∑
c=1

fc(rc)−
L∑
l=1

hl(xl)

+
N∑
n=1

λn

sn − ∑
l:s(l)=n

xl +
∑

l:e(l)=n

xl


+

C∑
c=1

µc

[
rc −

L∑
l=1

Rclxl

]

=
L∑
l=1

[(
λe(l) − λs(l) −

C∑
c=1

Rclµc

)
xl − hl(xl)

]

+
N∑
n=1

[Un(sn) + λnsn] +
C∑
c=1

[µcrc − fc(rc)] . (7)

Based on the above, the new optimization problem becomes

Problem 2: Relaxed U-C Problem
maximize: L(x, s, r; λ,µ)
subject to: 0 ≤ xl ≤ xmax

l , l ∈ L,
smin
n ≤ sn ≤ smax

n , n ∈ N ,
0 ≤ rc ≤ rmax

c , c ∈ C.

Observe, from expression (7), that the Lagrangian can be
written as the sum of L terms each involving a single flow,
N terms each involving a single divergence, and C terms
each involving a single reservation level. Therefore, Problem
2 breaks into the following L+N + C problems:

Problem 3a: Links (l = 1, . . . , L)
maximize:

(
λe(l) − λs(l) −

∑C
c=1Rclµc

)
xl − hl(xl),

subject to: 0 ≤ xl ≤ xmax
l .

Problem 3b: Nodes (n = 1, . . . , N )
maximize: Un(sn) + λnsn, subject to: smin

n ≤ sn ≤ smax
n .

Problem 3c: Channels (c = 1, . . . , C)
maximize: µcrc − fc(rc), subject to: 0 ≤ rc ≤ rmax

c .

Observe that, due to the strict convexity of the costs and the
strict concavity of the utility functions, each of these problems
has a unique solution.

Let the dual function q(λ,µ) be the maximum objective
of Problem 2, i.e.,

q(λ,µ) , argmax
x,s,r

L(x, s, r; λ,µ).

Consider also the following, dual problem:

Problem 4: Dual Problem

minimize: q(λ,µ).

In this problem, the optimization is over λ and µ and there
are no constraints. By standard duality theory [5], the optimum
value of Problem 4 (which is a minimization) coincides with
the optimum value of Problem 1 (which is a maximization);
furthermore, the optimum values x∗, s∗, r∗ can be found also
by solving Problem 2, using for λ and µ the optimum values,
λ∗ and µ∗, of Problem 4. Therefore, we can solve Problem 1
by solving Problem 4, and then using its solution, λ∗ and µ∗,
to solve the (much simpler) Problem 2, through Problems 3a,
3b, 3c.

B. Distributed solution of time-invariant problem

In order to solve Problem 4 (and subsequently Problem
1), we note that, by standard duality theory and the strict
convexity of the problem (Prop. 6.1.1, [5]), the dual function is
continuously differentiable, and for each pair of price vectors
λ,µ, the gradient ∇q(λ,µ) of the objective function q(λ,µ)
can be found using the constraint violations of Problem 1. In
particular, at the prices λ, µ, the value of the component ∇qλn

of the gradient corresponding to the price λn is

∇qλn(λ,µ) = sn −
∑

l∈L:n=s(l)

xl +
∑

l∈L:n=e(l)

xl, ∀n ∈ N ,

(8)
and the value of the component ∇qµc

of the gradient corre-
sponding to the price µc is

∇qµc
(λ,µ) = rc −

L∑
l=1

Rclxl, ∀c ∈ C, (9)

where the vectors x, s, r are the solutions of Problems 3a, 3b,
3c, for the prices λ,µ.

These formulae can be used for the distributed implemen-
tation of a gradient descent algorithm solving Problem 4. The
algorithm will be executed through the actions of a link agent
l (LAl) for each link l, a node agent n (NAn) for each node
n, and a channel agent c (CAc) for each channel c.

Distributed U-C Algorithm

INPUT: Each agent naturally possesses some of the problem
parameters it will need later. In particular:

1) LAl knows hl(·), xmax
l , and the coefficients Rcl for all

channels c it interferes with.
2) NAn knows Un(·), smin

n , and smax
n .

3) CAc knows fc(·) and rmax
c .

STEP 1 (INITIALIZATION) Let the iteration i = 0. NAn
selects an arbitrary initial λ0

n and relays it to the agents of its
incident links. Also, CAc selects an arbitrary initial µ0

c and
relays it to the links it is being interfered from.
STEP 2 Set i = i+ 1.

1) LAl solves the l-th Problem 3a and sends the flow xil
found to the node agents s(l) and e(l) and the channel
agents of all channels it interferes with.

2) NAn solves the n-th Problem 3b and finds sin.



3) CAc solves the c-th Problem 3c and finds ric.
STEP 3

1) NAn finds a new value for the price λin, using

λin = λi−1
n − a∇qiλn

.

a is a globally agreed step size and ∇qiλn
is found using

(8). NAn then relays λin to the agents of its incident
links.

2) CAc find a new price µic, using

µic = µi−1
c − a∇qiµc

.

∇qiµc
is found using (9). CAc then relays µic to the links

it is being interfered from.
STEP 4 If i < I , where I is a globally known maximum,
then GOTO STEP 2.
STEP 5 Produce as output the flows x, s and r found by
solving Problems 3a, 3b, 3c, with the last prices λI and µI .

Observe that communication is constrained between agents
that are physically near. As this mechanism implements a form
of gradient descent, it is guaranteed to converge [5], in the
sense that as I increases, the last set of prices λIn, µIc converge
to their optimal values λ∗n, µ∗c , and the flows produced at the
output also converge to their optimal values.

C. The case of variable problem parameters
The algorithm of Section III-B assumes that the parameters

of the problem (i.e., the utility and cost functions and the
various bounds) remain fixed. However, it can easily be
adapted to changing conditions. The way to do this is to
make sure that, during STEP 2, the most updated versions
of Problems 3a, 3b, 3c are solved. For example, if the utility
function of a node changes, the agent of that node will have
to adjust its problem formulation, and start solving a different
problem.

Formally, let us assume that the variables appearing at the
INPUT are changing with time, and so with the iteration i.
With respect to the Distributed U-C Algorithm, the following
changes are necessary:

1) At each STEP 2, the latest version of the input is used.
2) We remove the termination condition, so that the STEP

2-STEP 4 loop is executed continuously.
3) At the end of STEP 2, the agents use the prices currently

available to them to construct, in a distributed manner,
a feasible, suboptimal solution x′, s′, r′.

We refer to the resulting algorithm as the Variable Input
Distributed U-C Algorithm.

The distributed construction of a feasible solution at the
end of STEP 2, is necessary because solving the Problems 3a,
3b, and 3c with any prices other than the optimal ones will
in general provide us with a set of infeasible vectors x, s, r.
Under non-trivial scenarios, we expect that the algorithm
will never converge to the optimum values, and therefore
the vectors it will be providing, while hopefully close the
optimum, will be infeasible. Due to space limitations, we
present a distributed algorithm for constructing such a feasible
solution in [6].
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Fig. 1. The WMN example of Section IV.

IV. SIMULATIONS

We offer a preliminary evaluation of the distributed mech-
anism in a synthetic scenario based on the Funkfeuer WMN
deployed in Vienna, real-life mobility traces of taxis collected
at the same city, and simulated input regarding the CN chan-
nels and the WMN connectivity, among others. The simulation
setup does not comply to reality fully, and so should not
be seen as a quantitative evaluation of the potential real-life
synergy between a WMN and a CN, but as a proof of concept.

Our WMN contains 265 nodes placed in the actual locations
of Funkfeuer [3] routers in the Vienna. There are 592 links,
chosen so that the resulting connectivity closely resembles that
of actual WMNs, with a combination of short range and long
range links. The region containing the routers is covered with
100 CN cells arranged in a square grid. Frequency reuse with a
reuse factor of 4 is assumed. The WMN supports the download
of information by a number of vehicular users, as we describe
shortly.

We specify the reservation matrix as follows:
1) If link l connects two nodes s, e that exist on the same

cell c, then we set Rcl = 1.
2) Let link l connect a transmitter node s and a receiver

node e lying on adjacent cells that share an edge. Let c1
be the cell where the transmitter is located, and let c2
the cell that shares the same frequency set with c1 and is
closest to the receiver node e. We set Rc1l = Rc2l = 1.

3) Let link l connect a transmitter node s and a receiver
node e lying on adjacent cells sharing only a common
vertex. Let c1 be the cell where the transmitter is located,
and let c2, c3, c4 the three cells that share the same
frequency set with c1 and are closest to the receiver
e. We set Rc1l = Rc2l = Rc3l = Rc4l = 1.

4) All other entries of the reservation matrix are set to zero.



Regarding the channel costs, we set fc(rc) = r2c , and also
0 ≤ rc ≤ rmax = 50. Therefore, the prices of the CN
bandwidth becomes steeper as the WMN reserves more of
it, and the CN is forced to operate closer to its capacity.
Regarding the link costs, we set hl(xl) = x2

l , and also
0 ≤ xl ≤ xmax = 5. Our motivation for using this link cost
is that it promotes load balancing, as links with large traffic
volumes are heavily penalized.

We are simulating a downloading scenario as follows:
Among the nodes, one, centrally located, is chosen as a
gateway. Let this be node 1. We set smin

1 = 0, smax
1 = 26500,

so that the gateway can only insert traffic. All other nodes are
required to remove traffic, and in particular we set smin

n =
−100 and smax

n = 0 for all n 6= 1.
The utility of the gateway is chosen to be U1(s1) = 0. To

establish the utility function of the other nodes, we use real
life mobility traces corresponding to approximately 1300 taxis
equipped with GPS receivers operating in the greater Vienna
region as follows. With each mobility trace we associate a
vehicle interested in downloading data from the gateway. Let
k(n) be the number of vehicles that are within 500 m of
node n 6= 1 and closer to node n than to any other. Due
to mobility, k(n) is a function of time. For our simulations,
we used samples of k(n) separated by one minute intervals,
over a five hour period.

Let u(·) be the utility function of a single vehicle down-
loading data. We set it to be u(x) = 1000 log(1− x), x ≤ 0.
If there are k(n) vehicles associated with the node n, then the
utility function for that node is

Un(sn) =

{
k(n)u(sn/k(n)), sn ≤ 0,
−∞, sn > 0.

The rationale is simple: as u(·) is concave, it is best to divide
the divergence in equal parts to all k(n) vehicle. Each vehicle
derives a utility equal to u(sn/k(n)), and all k(n) of them a
utility k(n)u(sn/k(n)).

As the vehicles are moving, k(n) is changing with time,
and with it the utility function of node n and consequently the
optimal traffic. Indeed, in the first plot of Fig. 2 we plot, with
a continuous line, the value of the optimum of Problem 1, as
obtained using MATLAB, as it changes with time. The x-axis
is in minutes, and every single minute the numbers of taxis
k(n) change. In the same figure, we have plotted, with dashed
lines, the dual function and the corresponding feasible value
obtained if the prices are updated 20 times every minute. (The
dual values are above the optimum, and the feasible values
below it.) Finally, we have plotted, with dotted lines, the dual
function and the corresponding feasible value obtained if the
prices are updated 200 times every minute. The behavior of
the algorithm can be seen more clearly in the second plot of
Fig. 2, where we have focused in a time window where the
algorithm has converged from its initial point of operation to
near-optimal operation points.

It is apparent from these figures that our method leads to the
calculation of such flows that the corresponding total benefit
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Fig. 2. Evolution of the distributed mechanism in the time intervals [0 min,
300 min] and [150 min, 200 min]. The optimal objective is denoted by a
continuous line. The dual value and the corresponding feasible value for 20
price updates per minute (200 updates per minute) are plotted with dashed
(dotted) lines, over and below the optimal objective respectively.

is constantly close to the optimal one, except for the initial
”bootstrapping” period. As expected, this tracking is more
efficient if more iterations are possible before the problem
changes.

V. RELATED WORK

Ever since its introduction [7], cognitive radio has been
identified as a key communication paradigm capable of pro-



viding substantial relief to the problem of bandwidth shortage.
A review of Cognitive Network research appears in [1].

One of the first works to study Cognitive Wireless Mesh
Networks is the work in [8]. There, a new approach to spec-
trum sensing is devised, an analytical framework is proposed
for allowing mesh routers to estimate the activity in a channel,
and a channel assignment problem is formulated. In contrast
to our work, however, the primary channel is used to support
the communication between mesh clients and mesh routers,
and not the communication between the routers.

Closer to our work is the work in [9]. There, the authors
present a formulation for performing fair bandwidth allocation
in a cognitive WMN. Their formulation performs simultane-
ously routing, scheduling, and spectrum allocation, and so is
similar to our own. However, the two approaches differ in the
following important issues: First, in [9] centralized algorithms
are proposed. Secondly, the optimization problems formulated
are linear and achieve either max-min or lexicographic max-
min fairness. Finally, the work in [9] does not scale well, as
it requires the explicit calculation of all modes of operation in
the network.

In [10] the authors develop a multi-commodity formulation
for minimizing the network-wide use of the primary radio
bandwidth. A Mixed Integer Nonlinear Program is formulated.
Due to its complexity, the authors propose a method for
establishing tight lower and upper bounds for the objective.
In follow-up work [11], a distributed algorithm for approxi-
mately solving a similar, also MINLP, optimization problem
is proposed.

In [12] the authors consider a stochastic setting in which the
availability of bandwidth, caused by the absence of primary
users, is random, and not known beforehand to the mesh
nodes. The authors introduce an optimization problem that
can be solved by a distributed algorithm which requires no
prior knowledge of the probabilistic behavior of the primary
users. There are a number of differences to our formulation,
the most critical being that transmissions of secondary users
over the same primary bandwidths do not interfere with each
other.

Note that, in contrast to the majority of other cognitive radio
formulations, where the primary users are oblivious to the
existence of secondary users (the commons model) we assume
that the primary user, i.e., the CN, is actively cooperating
with the secondary user, i.e., the WMN, by leasing its spare
bandwidth (the spectrum leasing model). Other works focusing
on this approach are [13], [14], [15].

Finally, we mention that a formulation related, but distinct,
to the one proposed here was succinctly delineated, by the
authors of this work and others, in [16]. There, no distributed
algorithm was presented, and the emphasis was on the study
of multiple WMNs competing for the same resources.

VI. CONCLUSIONS

We present a framework for enabling a potentially powerful
synergy between WMNs and CNs. We present an optimization
problem that a WMN can solve to optimize its traffic given

its own utilities and costs and the cost of leasing cellular
bandwidth. We present a distributed algorithm that solves
this problem even while the problem parameters change.
A preliminary numerical study verifies that the mechanism
manages to provide traffic flows close to the optimal ones.

Future work includes the development of a detailed packet
level simulator that can provide quantitative evaluation of a
real-life synergy between a WMN and a CN; the extension
of the theory in the multicommodity case; the development of
faster iterative algorithms such as Newton and quasi-Newton
methods; the extension of the formulation in the plain convex
and non-convex cases; and the game-theoretic investigation of
multiple WMN, multiple CN scenarios.

ACKNOWLEDGMENT

Research for this work has been partly funded by MOMO
(Multi-Overlays for Multi-hOming) project, a SJRP (Specific
Joint Research Project) within the EURO-NF Network of
Excellence (NoE).

REFERENCES

[1] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks:
a survey,” Computer Networks, 50(13), pp. 2127–2159, Sep. 2006.

[2] D. Willkomm, s. Machiraju, J. Bolot, and A. Wolisz, “Primary user
behavior in cellular networks and implications for dynamic spectrum
access,” IEEE Communications Magazine, 47(3), pp. 88–95, Mar. 2009.

[3] [Online]. Available: www.funkfeuer.at
[4] D. P. Bertekas, Network Optimization: Continuous and Discrete Models,

1st ed. Belmont, MA: Athena Scientific, 1998.
[5] ——, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scien-

tific, 1999.
[6] S. Toumpis, I. Tselekounis, G. Stamoulis, H. Meyer, A. Hess, and

K. A. Hummel, “Cognitive WMN: A distributed mechanism for leasing
cellular network bandwidth,” extended technical report, available online
at http://pages.cs.aueb.gr/∼toumpis/hotmeshnet extended.pdf.

[7] J. Mitola III and G. Q. Maguire, Jr., “Cognitive radio: Making software
radios more personal,” IEEE Personal Communications, vol. 6, no. 4,
pp. 13–18, Aug. 1999.

[8] K. R. Chowdhury and I. F. Akyildiz, “Cognitive wireless mesh networks
with dynamic spectrum access,” IEEE Journal on Select. Areas in
Communications, vol. 26, no. 1, pp. 168–181, Jan. 2008.
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