Enforcing Truthful-Rating Equilibria in Electronic Marketplaces

T. G. Papaioannou and G. D. Stamoulis

Networks Economics & Services Lab, Dept.of Informatics, Athens Univ. of Economics & Business (AUEB) http://nes.aueb.gr

IBC'06, July 2006 - Lisbon, Portugal

Work partly funded by EuroNGI Network of Excellence (IST-2003-507613)

Overview

- Problem definition and related work
- The basic model (fixed punishments) and its analysis
- The extended model (reputation-based punishments) and its analysis
- Conclusions Future Work

Reputation in Peer-to-Peer Systems

- Reputation reveals hidden information
- Only effective with reputation-based policies [1]
 - "Provider Selection" and "Contention Resolution" ones
- But, reputation is vulnerable to false or malicious ratings
- Thus, collect ratings from both transacted parties and punish both in case of disagreement [2]
 - At least one of them is lying
 - Punishment is not monetary
- [1] "Reputation-based policies that provide the right incentives in peer-to-peer environments", Computer Networks, vol. 50, no. 4, March 2006.
- [2] "An Incentives' Mechanism Promoting Truthful Feedback in Peer-to-Peer Systems", GP2PC'05.

The Context

- Reputation is studied in electronic marketplaces where participants act
 - both as providers and as clients
 - competitively, so as to maximize their market share
 - E.g. exchanging vinyl records among collectors, software modules among programmers, etc.
- Provider selection based on reputation
- Malicious rating may offer competitive advantage

Our Objectives

Provide incentives for truthful rating in such a context

To this end:

- Analyze the dynamics of fixed monetary punishments
- Find necessary conditions for stable truthful rating equilibrium
- Customize punishments w.r.t. reputation to reduce social unfairness

Related Work – Monetary Penalty Approaches

- Miller, Resnick, Zeckhauser: Truthful rating is a Nash equilibrium for clients if certain penalties are induced to them for potential lying
- Jurca, Faltings: Side-payments upon evidence of lying; clients do not act as providers
- Dellarocas: Penalty to provider to compensate payoff gains from offering lower quality than promised. Nash equilibrium for truthful clients

What is innovative

- Dual role of participants
- Reputation-based competition and impact on incentives for truthful reporting
- Stability analysis of truthful-rating Nash equilibrium enforced by each mechanism
- Tailored reputation-based punishments

The Basic Model

AZOSE VOID

The Basic Model

- E-marketplace with N participants
 - N either fixed or mean number of participants with geometrically distributed lifetimes
- Each participant has a probability a_i to provide service instances successfully, i.e. of satisfactory quality
 - Private information; reputation is an estimate for it
- A successfully provided service instance:
 - Offers fixed utility u to the client
 - Demands costly effort v
 - Costs b to the client, with pre-payment $p \cdot b$ to balance the risks
- Time is discretized in rounds

At each round....

- Each participant may act as a provider with probability q and as a client with probability 1-q
- Reputation-based policy: Clients associate to providers probabilistically fair to the reputation of the latter
 - Demand attracted by provider i is proportional to his rank $R_i = \frac{r_i}{r}$
- Both transacted parties have to rate service provision
 - Upon agreement, the client pays $(1-p)\cdot b$ and the vote is registered for the provider
 - Disagreement incurs fixed punishment c to both

Single Transaction Game

- Two sub-games depending on the service provision outcome: success or failure
- Reporting strategies in S={ Witness, Lie, Duck}
- Impact of agreed rating to future payoffs of participants
 - A positive rating results to $w_p > 0$ and $-w_c < 0$ payoff impacts for the provider and the client respectively
 - A negative rating results to $-w_p' < 0$ and $-w_c' > 0$ payoff impacts for the provider and the client respectively
- w_p , w_p , w_c , w_c are taken fixed

Truthful Equilibrium Conditions and Stability

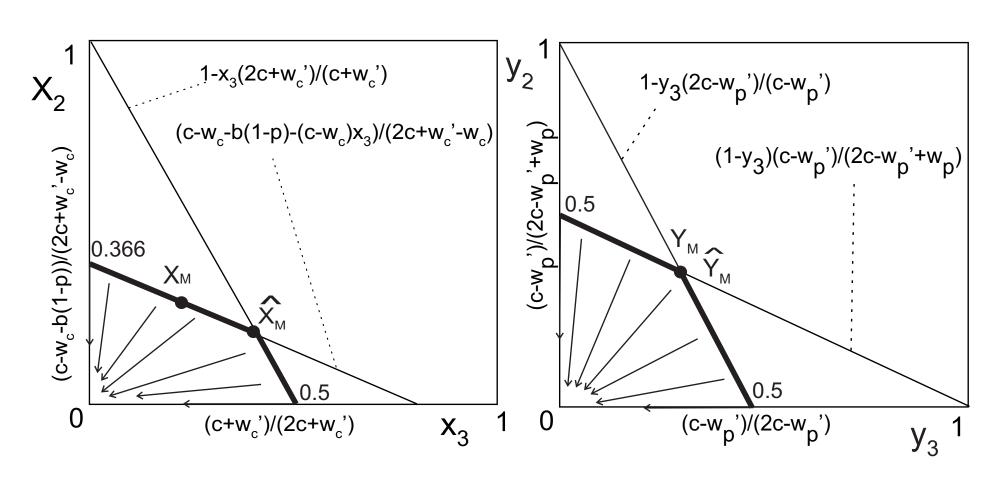
Truthful Nash Equilibrium

- Derive conditions for disagreement punishment so as truthful reporting is a Nash equilibrium in both subgames
- Disagreement may rationally happen only in two cases
 - Upon success: providers Witness and clients Lie or Duck
 - Upon failure: clients Witness and providers Lie or Duck
- Witness is best response to itself when $c > (1-p) \cdot b + w_c$ and $c > w_p$
- Does this equilibrium arise? Is it stable?

Evolutionary Stability

- Evolutionary Stable Strategy (ESS):
 - Nash equilibrium
 - Better reply to any mutant strategy than the latter to itself
- Strict Nash equilibrium of the asymmetric gameESS of its symmetric version
- Evolutionary dynamics for strategy s with payoff π_s played by a population fraction x_s :

$$\dot{x}_{s} = \frac{dx_{s}}{dt} = x_{s}(\pi_{s} - \overline{\pi})$$



Stable Truthful Reporting

- (x_1, x_2, x_3) (resp. (y_1, y_2, y_3)) the population fractions of providers (resp. clients) that play (*Witness*, *Lie*, *Duck*) respectively
- Basin of attraction: Region for population mix that ultimately leads to the stable equilibrium
- Proposition 1: The basin of attraction of ESS truthful reporting is the region $X^* \times Y^*$ given by the conditions on x_2 , x_3 and y_2 , y_3 ...

The Basin of Attraction

The Extended Model

The Extended Model

- Two important differences from basic model
 - Monetary disagreement punishment is not fixed but depends on the transacted participant's rank and its role
 - Payoff impacts of a vote are not taken fixed, but they are calculated algebraically
 - Expected payoff at round t for a participant i:

rank success probability probability
$$V(R_i^{(t)}, a_i) = q \frac{1-q}{q} R_i^{(t)} [a_i(b-v) + (1-a_i)pb] + \\ + (1-q)[\overline{a}(u-b) + (1-\overline{a})(-pb)]$$

Innovative Reputation Metric

- Beta reputation metric: $r' = \frac{\beta z + \mathbf{1}(success)}{\beta n + 1}$
- Results to time-dependent impact of a single vote to rank values of transacted parties
- Solution: An innovative reputation metric $r' = \beta r + \mathbf{1}(success)(1-\beta)$
- Now, rank impacts are not time-dependent, e.g. $\Delta R_p^+ = \frac{1-q}{q} R(\frac{\beta R \overline{r} + 1 \beta}{\overline{r} + \frac{1-\beta}{NT}} R)$

Rank-based Punishments

- Derive conditions for disagreement punishments enforcing the truthful rating equilibrium
 - Proposition 2

Outline of Proof. Single stage deviation from truthful reporting at stage t should not be beneficial.

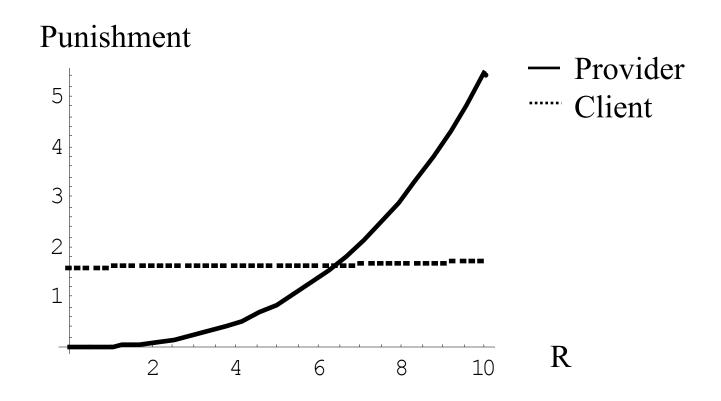
Conditions on c_i and c_j are ...

Conditions on c_i , c_j

 c_i is given by:

$$c_i(R_i^{(t)}) > \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} [V(\widetilde{R}_i^{(\tau)}) - V(R_i^{(\tau)})]$$

• As N is large, c_i is approximated by a simple formula


 $-c_i$ is given by:

$$c_{j}(R_{j}^{(t)}) > (1-p)b + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} [V(\widetilde{R}_{j}^{(\tau)}) - V(R_{j}^{(\tau)})]$$

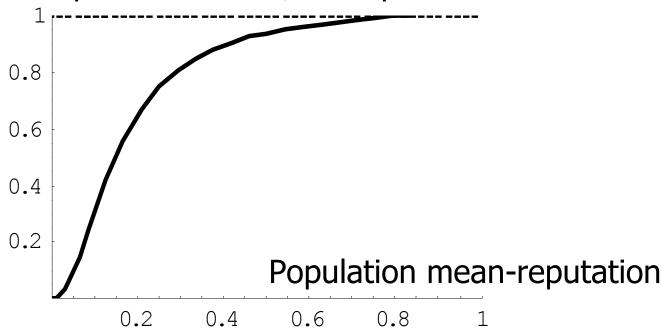
This can be bounded from above and below

Numerical Example

 \sim N=1000, q=0.4, p=0.2, b=2, u=2.5, v=0.5, β=0.6

Social Loss Estimation

Social Loss


- Disagreement punishment is unfairly induced to one of the transacted peers → social loss
- When punishment is fixed, $c > q w_p' + (1-q)[(1-p)b+w_c]$
 - The maximum payoff impacts w_p , w_c have to be assumed
- Thus, an unfairness is created for all the non-highest ranked participants → greater social loss
- Reputation-based punishments prevent this unfairness!

Numerical Example

Average ratio of social loss per participant per disagreement for various mean reputation values

Reputation-based/Fixed punishment ratio

Normal distribution of ranks with $(\mu, \sigma)=(1, 0.5)$

Concluding Remarks

- Proposed a simple mechanism that provides incentives for truthful rating in an interesting context of an e-marketplace
 - Reputation-based competition
 - Dual role of participants
- Derived conditions on the effectiveness of such a mechanism with fixed punishments
 - Stability analysis of truthful-rating Nash equilibrium
- Tailored reputation-based punishments
 - Calculated the payoff impacts of a rating to provider and client
- Calculated the attained social loss reduction

Recent and Future Work

- Employ different fixed punishments for provider and client
- Relax the condition on fixed success probability of participants
- Derive upper bound in the achievable social loss reduction by reputation-based disagreement punishments
- Explore stability conditions for truthful equilibrium with reputation-based disagreement punishments