Pricing the Internet

Costas Courcoubetis

Athens University of Economics and
Business
and
ICS-FORTH

Outline

- The growth of the internet
- The role of pricing
- Some pricing proposals
- Pricing in a competitive framework
- Conclusions

Costas Courcoubetis

The Size of the Internet

- Public internet is considerably smaller than voice and private line networks (Odlyzko 1999)
- Voice network still dominates in carried load
- Data networks lightly utilized
 - Users value burstiness, peak bandwidth
- Growth (per year): Internet 100%, PL 20-30%, voice 10%, FR 100%

The Size of the Internet (Cont.)

network	bandwidth (Gbps)	traffic (TB/month)
	(Gbb3)	(10/111011111)
US voice	375	43,000
pub Internet	150	5-8,0000
private line	400	4-7,000

Other public data networks: 80Gbps, 1000 TB/month

Costas Courcoubetis 3 Costas Courcoubetis 4

Data Networks and Congestion

network	utilization (average)	utilization (peak)
Local phone line	4%	10%
US long dist. voice	33%	70%
Internet backbones	10-15%	25%
Private line networks	3-5%	15-25%
LANs	1%	5%

Costas Courcoubetis

5

Congestion and User Preferences

- Parts of the internet are highly congested
 - Public peering points, naps, maes
 - I Feeder links that aggregate traffic into backbone
 - Transatlantic links (us->rest of the world)
- Bad performance is due to many reasons
- User preferences: low transaction latency
 - More transactional traffic than multimedia

Costas Courcoubetis 6

The Evolution of the Internet

- Two directions:
 - Single service best-effort class, state-less, offers high quality through low utilization
 - Similar to evolution of lans, pcs
 - Multiple classes, state-aware, better utilized
 - Cost of control vs cost of bandwidth
- Internet economics will decide!

The Role of Charging

- Assume:
 - Finite capacity C
 - Minimum level of QoS
 - $| price \downarrow 0 \Rightarrow demand >> C$
- Need some form of admission control
- Role of charging:
 - I Flexible admission control
 - Users that need more can get more!!

Costas Courcoubetis 7 Costas Courcoubetis

Charging vs Admission Control

- Decisions made by users not network
- Flexible form of policing
- Fair allocation of resources
- Incentive compatible mechanism
- Increased stability and robustness
- Cost recovery
- Problems:
 - Internet technology: 'its not my problem'
 - Cost of charging
 - Reduces penetration of internet

Costas Courcoubetis

9

The Continuously Expanding Model

- The demand and the network expand continuously
- Is there a need for charging for usage?

Some Questions

- How are prices constructed?
 - I Regulation vs competitive markets
- Structure of prices?
 - Dynamic vs static
 - Flat vs usage-based
 - Service differentiation
- Who pays the bill?
 - Propagation of incentives

Dynamic Pricing

- Prices reflect congestion at network resources
- Flows determined by:
 - User's willingness to pay
 - Congestion prices inside the network
- Proposed methodologies: many
 - Smart markets (incentive-compatible auctions, mackie mason and H. Varian)
 - Proportional fairness (F.P. Kelly)

12

11 Costas Courcoubetis Costas Courcoubetis

Sample Path Shadow Prices

Paris Metro Pricing

Idea: create two logical networks, fix two different price levels (high-low), let users self-adjust (Odlyzko 1997)

Differential quality (throughput) is the result of differential pricing

• no need for extra network mechanisms

Costas Courcoubetis 14

Stability Under Competition

- Pricing shemes must be stable in a competitive market
- Various models of competition
 - Monopoly, oligopoly, perfect competition
 - Different results regarding price stability
- Game: provider A seeks to maximize revenue
 - I Strategy: builds network of size $C_{\scriptscriptstyle A}$, sells services $S_{\scriptscriptstyle A}$, uses tariffs $T_{\scriptscriptstyle A}$
 - I Find equilibrium solution

Some Results

- Perfect competition monopoly:
 - Usage-based, market segmentation
- Oligopoly:
 - Trade-off between market segmentation and increased competition
 - I Single service class might be preferable (R. Mason), unstable situations when 2 classes (PMP?)
 - Usage-based pricing not always optimal
 - Cost of charging might be very important

Costas Courcoubetis 15

Costas Courcoubetis

16

Market Segmentation: an Example

Sell a product to different customer types

Flat Rate Pricing

- Flat rate pricing is widely used because
 - Easy to implement, some users like it
- Problems with flat rate:
 - High social cost (produces waste)
 - Light users subsidize heavy users
 - Unstable under competition
 - Inefficient market segmentation
 - Generates lower income for providers
 - Lower benefit for most users (except the heavy ones)
 - Recent experimental results for internet pricing in INDEX experiment (UC berkeley)

Costas Courcoubetis 18

Flat Rate Pricing (Cont.)

Assume network cost = MC x

Under flat pricing, users consume more than economically justifiable

Cross-subsidization

Low users will not participate => loss of revenue and SW
• solution: decrease flat fee (=> bad QoS, or constrain usage)

Costas Courcoubetis 19 Costas Courcoubetis 20

Cross-subsidization (Cont.)

Game: competitive provider with usage charge = MC

=> eventually all customers prefer usage charge!

What will happen if the other provider switches also to usage charging?

Costas Courcoubetis 21

Supplementary Slides

Conclusions

- Internet needs some form of flexible admission control to sustain quality levels
 - Intelligence pushed to the edges of the network
- Stability and robustness
- Prohibitive cost for introducing new tecnologies
- Pricing + service differentiation = competitive tool
- Many new open issues
- New business models
 - Bundling content with transport
 - Risk management
 - Intelligent software at the edges, optimization on behalf of users

Costas Courcoubetis 22

The Demand Curve

The demand curve:

 $CS(p) \qquad CS(p) \qquad u(x) \qquad v(x) \qquad v(x)$

x(p)

x(p) = quantity demanded at price p

CS(p) = consumer surplus at price p

 $u(x) = \frac{CS(p) + px}{}$

= value of consuming x

Costas Courcoubetis 24

 \boldsymbol{x}

Maximising Efficiency

Costas Courcoubetis

25

