
39 1



Abstract—Peer-to-peer file sharing applications generate huge

volumes of the Internet traffic, thus leading to increased

congestion and costs for the ISPs, particularly due to inter-

domain traffic. Thus, analysis of peer-to-peer applications and

related optimization approaches (such as locality awareness or

caching techniques) has been the subject of extensive recent

research. In this paper we introduce and analyze a probabilistic

model that employs a Markov chain, aiming to approximate the

transient evolution of a swarm with a fixed number of peers. This

model estimates the distribution of the number of chunks already

downloaded by a certain peer at any time. We also show how this

model can serve as a tool to analyze certain properties of peer-to-

peer applications, such as monotonicity of performance, and

primarily to evaluate the effectiveness of cache insertion in a

network serving peer-to-peer. For tractability reasons, the model

employs certain simplifications of the original BitTorrent

protocol, the impact of which is limited as validated

experimentally.

Index Terms—peer-to-peer, evaluation, Markov chain,

performance.

I.INTRODUCTION

eer-to-peer file sharing systems generate huge volumes of

Internet traffic, which lead to increased costs for the

ISPs, particularly for inter-domain traffic. Several approaches

have been proposed that aim to achieve reduction of the inter-

domain traffic and/or the download times. Most of them try to

increase the degree of localization of traffic, thus reducing

inter-domain traffic and possibly improving performance. Such

approaches either propose biased peer selection [1], or using

an Oracle service for peer ranking [2] or using existing

information from content distribution networks [3]. In [4],

Papafili et al. introduced a different approach, namely the

insertion of resourceful overlay entities (referred to as ISP-

owned Peers, IoPs). IoPs participate actively in the peer-to-

peer swarm and exchange data chunks with regular peers, thus

serving as transparent and non-intercepting caches, which

however initially have to acquire the content too.

In this paper, we focus on BitTorrent [5] as it is the most

popular peer-to-peer file sharing application; however, our

study can be also extended to bittorrent-like streaming

 Manuscript received March 26, 2010. This work was supported

partially by the EU IST project SmoothIT (FP7-ICT-216259).

 Ioanna Papafili is a PhD student in Athens University of Economics

and Business, Patission str. 76, 10343, Athens, Greece (phone:

00306970015650; e-mail: iopapafi@aueb.gr).

 George D. Stamoulis is a professor in Athens University of Economics

and Business (e-mail: gstamoul@aueb.gr).

applications such as Tribler. In particular, we develop a

Markov model for a BitTorrent swarm with a fixed number of

peers. This model estimates approximately the transient

distribution of the number of chunks already downloaded by a

certain peer at any time.The model can serve as a tool to

analyse certain properties of BitTorrent and to evaluate the

impact on performance of cache insertion in the form of an

IoP. It should also be noted that for the latter purpose a model

for the transient evolution of the swarm is much more suitable,

because the insertion of an IoP mainly aims to have a positive

impact in the beginning, where most of the leechers in a swarm

are lacking the largest part of the shared content. Once this

purpose is attained, then the IoP can devote its resources to

another swarm, rather than remain in the previous one.

The remainder of this paper is organized as follows: In

Section II, a brief overview of articles on BitTorrent modeling

is presented. In Section III, we propose a Markov model for

the evaluation of cache insertion in BitTorrent networks;

motivation, assumptions and evolution are described here. In

Section IV, results for simulative evaluation of the

approximating assumptions of the model are presented; then,

we validate the Markov model‟s results with results derived by

means of simulations; and finally, we present evaluation

results acquired by use of the Markov model on the impact of

cache insertion in BitTorrent network. Last, in Section V, we

conclude our contribution. Detailed equations of the Markov

model are given in the Appendix.

II.RELATED WORK

There is an extensive literature on peer-to-peer performance

evaluation. Many relevant works are exclusively based on

analysis of measurements from actual systems and/or

simulations. In this subsection, we overview selected articles

that include models for the performance evaluation of peer-to-

peer file-sharing with emphasis on BitTorrent and we

comment on their relation with our work. . Evaluation results

attained by models that apply to the steady-state of a

BitTorrent swarm cannot be compared to results attained by

our model. On the other hand, comparison of our results with

those attained by models for transient analysis is meaningful

and is presented at the end of Section IV.

In [6], Kumar and Ross analyze the minimum distribution

time for a file in a system with seeds and leechers. In

particular, by employing a deterministic fluid-flow model, they

provide a lower bound that involves the download and upload

rates of the various peers and then show that this bound can

indeed be achieved by scheduling the various transfers of the

file appropriately.

P

A Markov model for the evaluation of cache

insertion on peer-to-peer performance

Ioanna Papafili and George D. Stamoulis

39 2

In [7], Yang and de Veciana initially deal with the capacity

attained in peer-to-peer systems due to their fundamental

feature that each peer can serve other peers while still

downloading the missing content. The authors thus develop a

simple deterministic model that shows the effect of this feature

in the transient case similar to that of our model, with only one

of the peers storing initially the content file. In particular, it

follows that the average delay per peer is logarithmic in the

number N of peers. Moreover, if the file is partitioned into m

chunks, then due to pipelining, the average delay is reduced by

a factor of m. The authors of [7] also develop a two-

dimensional Markov model for the steady state analysis of the

system. The problem of calculating the completion time is also

studied by Mundiger et al. in [8], under more general

assumptions. These authors derive the optimal centralized

upload schedules both for the case of a central server and for

the case of a decentralized system with all peers having equal

capacities. They then develop another model for the transient

evolution of a peer-to-peer system, whereby the number N(t) of

peers that have already downloaded the file by time t is

modeled as an age-dependent branching process with a family

size of 2 in each generation. Therefore, the expected value

E[N(t)] grows exponentially with time t, provided that there is

sufficient demand in the system.

In [9], Qiu and Srikant initially present a deterministic fluid

model for the performance of BitTorrent. The model of [9] is

motivated by the Markov model of [8] and comprises the same

parameters. The authors present (among others) a probabilistic

model for the evaluation of the parameter  that expressed the

effectiveness of BitTorrent in the sense of the degree of the

contribution of each downloader to the other ones. In

particular, this model quantifies the probability  that a

particular downloader has a chunk that is among the ones

needed by another one. In fact, the assumptions made with

respect to the distribution and selection of chunks possessed

by a peer are the same to those our model, as described in

Section III.B. It turns out that  kNNlog1 , where k is

the total number of chunks of the file. This implies that for a

large file (i.e. for a large value of k), 1 ; that is, a

downloader contributes to the others almost as much as a seed.

In [10], Leibnitz et al. present a fluid flow model for

evaluating the transient performance, in particular reliability

and efficiency, of content distribution services that can be

realized by traditional client/server (C/S) architectures or peer-

to-peer networks involving malicious peers.

Besides [8], several articles deal with the steady-state

performance analysis of BitTorrent with dynamically varying

population. Next, we briefly overview selected such articles. In

[11], Ge et al. present a steady-state queueing model that

comprises all the main ingredients of a peer-to-peer file

sharing system, while applies to a variety of such systems. This

model is then solved analytically by means of an

approximation based on bottleneck analysis, and it is validated

by means of simulations. The work of Fan et al. in [12] deals

with an important tradeoff arising in BitTorrent, namely:

achieving fast downloads vs. keeping “fat” (i.e. resourceful)

peers in the system as much as possible in order to help other

peers attain a fast download. The latter objective appears to be

unfair for the fat peers, thus giving rise to a tradeoff between

performance and fairness (i.e. better service for peers

contributing more to the system), which is investigated in the

paper by means of steady-state analysis.

III.THE MARKOV MODEL

A.Motivation

As already stated, the Markov model proposed in this paper

models a BitTorrent swarm, namely an overlay network for the

sharing of one file. We focus on BitTorrent since it is the most

popular file sharing application. The purpose of the Markov

model is the analysis of certain properties of BitTorrent, such

as monotonicity and scalability of performance, and primarily,

the evaluation of cache insertion as a means to achieve

performance improvement. As already explained in Section I,

by caches we mean overlay entities that participate actively in

the peer-to-peer network and exchange data chunks with

regular peers. These entities are referred to as ISP-owned

Peers (IoPs) [4].

A Markov chain is employed to estimate approximately the

transient distribution of the number of chunks downloaded by

each peer. Based on this, we can also estimate other

performance measures such as the upper tail of the distribution

of the time required for a peer to complete downloading a file.

For the purpose of analytical tractability, the model employs

certain simplifications of BitTorrent; thus, it is expected that

its outcomes will constitute bounds for the corresponding

metrics of the actual BitTorrent.

The Markov model in its present state can be employed for

studying the following issues:

 Monotonicity of completion times in a BitTorrent network

for different numbers of regular peers;

 Impact of the insertion of an IoP on performance; tradeoff

w.r.t. the associated capacity of the IoP;

 Impact of insertion of mere IoPs with heterogeneous

capacities; tradeoff w.r.t. the number and capacity of the

IoPs.

For each one of the cases involving IoP(s), the transition

probability matrix of the Markov chain is slightly different

than that of the first case without IoP. Moreover, the model

can easily be extended to other cases and scenarios where

other optimization approaches, e.g. locality awareness, are

employed.

In the subsections III-B and III-C, we present the basic

assumptions, the rationale and basic equations that describe

the evolution of the Markov chain.

B.Assumptions

Our Markov model is a discrete time model; i.e. time is

slotted. Originally, we consider 1N peers in the swarm;

namely, N downloaders with initially 0 chunks, and 1 seeder

which has all K chunks. Moreover, for simplicity we assume

that after a downloader finishes its downloading then it turns

into a seed, namely it does not leave the swarm. (By

introducing minor modifications to the formulation, the model

39 3

can accommodate other assumptions on this issue.) The

population of peers remains constant.

Next, we present our assumptions on the modeling of the

peer-to-peer application. First, we assume random chunk

selection, instead of BitTorrent‟s rarest first replication. Due to

symmetry among chunks in their initial distribution, the

system‟s state is fully specified by the number of chunks that

each peer has acquired until the end of step n, or equivalently

by the number of peers out of N that have 0, 1, …, or K chunks

at step n. Therefore, the number of different states with this

formulation would be equal to the number of choosing k

elements out of n with repetition:

 
!!

!

NK

KN

K

KN 








 
.

Due to the prohibitively large state space we resort to an

approximation, which is motivated by the fact that due to

symmetry the evolution of the marginal distribution of the state

any given peer is same as that of any other peer. Let D be a

tagged peer out of the set of the N downloaders. The state of D

(as well as that of any other peer) belongs to  K,...,2,1,0 . The

objective of the model is to derive this marginal distribution of

the state of the tagged peer D. Furthermore, for simplicity

reasons, we assume that at every step n, only 0, 1 or 2 chunks

can be downloaded by each peer, regardless of how many

peers have unchoked this peer; additionally, each peer can be

unchoked by every other peer only once. As already mentioned

chunks are selected at random and uniformly. Thus, all chunks

that D is missing are considered useful and assumed to be

sought simultaneously. We have assumed that a peer can

download up to 2 chunks at each step since we have measured

by means of simulations that the number of chunks

downloaded per peer in each choking interval is in general less

than or equal to 2. This is supported by the calculations above

and by the experimental results presented in Section IV.

Second, BitTorrent‟s choking algorithm, the well-known „tit-

for-tat‟, is ignored; unchokes are given to peers randomly

selected out of the set of potentially interested downloaders.

Each peer has the possibility for cl unchokes; parameter c

represents the minimum of a) the actual number of unchokes

that each peer possesses (by the BitTorrent protocol) and b) of

the number of unchokes possible due to the upload bandwidth

capacity bottleneck in this peer. For instance, the protocol

allows each peer to unchoke up to 5cl other peers per

choking interval. In order to derive results comparable with

results attained by the simulations, we take 2cl . For

instance, a peer with nominal upload bandwidth equal to 512

kbps is able to upload/serve only 2 chunks. Indeed, 512 kbps

corresponds to 64 KB/s upload. In an interval of 10 secs, this

corresponds to uploading 640 KB, which is slightly higher that

2x256 KB (where 256 KB is the size of a chunk).

Due to the aforementioned assumptions, our Markov model

corresponds to a version of BitTorrent where all decisions are

made randomly, and thus is expected to have inferior

performance compared to the original BitTorrent.

Consequently, the estimates obtained by our model are

expected to constitute upper bounds of the actual performance

of the BitTorrent protocol.

C.Evolution of the Markov Chain

First, we consider modelling the native BitTorrent protocol.

The transient marginal distribution of the state of a regular

peer D at step n is denoted         KPPPnP nnn ,...,1,0 ,

where    kXkP nn  Pr . The transient distribution at step

n+1 is derived as follows:

     
       kkPkPkkPkP

kkPkPkP

nnnn

nnn

,,11

,22

11

11









where the transition probability  kkPn ,21  corresponds to

the event that peer D is unchoked by and finds useful chunks

in two or more other peers at step n+1, given that peer D has

2k chunks at the end of step n; transition probability

 kkPn ,11  is defined similarly, while  kkPn ,1 is the

transition probability that peer D is either choked by all peers

or does not find any useful chunk at any peer he is unchoked

by, given that it has k chunks at step n. The three transition

probabilities sum to 1.

The calculation of the transient probabilities at every step is

an iterative process; the procedure is depicted in Fig. 1. Due to

the fact that population size N is fixed, there is a deterministic

upper bound in our setting for the overall completion time.

Since the completion time of the last peers might be quite

large, this upper bound can be loose. Thus, we choose to

consider the G-th percentile of the overall completion time;

that is step n*, when a large portion of the peers (say 90% or

95%) will have finished downloading; that is, they have K

chunks. Using the transient marginal distribution of the state of

D, it follows for   GKPnnn n  :min*:* , where G will be

taken either 0.90 or 0.95. Additionally, we also consider the

average completion time among all peers, which is

  





1
1:

n
n KPn .

Fig. 1. Iterative process.

The equations that characterize the Markov chain evolution

are given in the Appendix. These equations involve also the

distribution of: a) the number  nNs of downloaders that have

K chunks at step n, and b) number  nNe of downloaders that

have 0 chunks at step n. Note that the corresponding sets of

downloaders are non-overlapping. Since K is large,

initially   0nN s , while as time progresses   0nNe . As an

approximation, these random variables are taken to be

independent. Moreover, their distributions are approximately

taken as binomial, i.e.:

39 4

         xN
n

x
ns KPKP

x

N
xnNP










 


1
1

1
,

         zN
n

z
ne PP

z

N
znNP










 


1
010

1
.

This amounts to taking that the event where a certain peer is

in state 0 (or resp. in state K) is independent of the

corresponding events for other peers; note that all these events

are identically distributed.

Next, we consider the insertion of an IoP with higher

capacity than regular peers in the BitTorrent overlay. For this

case, the transition probability matrix of the basic Markov

chain is modified as follows: Due to the higher capacity, we

assume that the IoP is always unchoked twice by the original

seed; namely the IoP downloads 2 chunks at every step with

probability 1, both of them from the original seeder. Note that

the IoP behaves as a regular peer until step 2Kn  , and from

that step ahead as a seeder. In order to further study the impact

of the IoP on peer-to-peer performance, we also considered a

third case, namely, the insertion of the ISP-owned Seed (IoS)

scenario, i.e. the insertion of a second seeder again with higher

capacity than the original regular one. Performance

improvements achieved by the insertion of the IoS are

expected to constitute an upper bound to the performance

improvements achieved by the insertion of IoP.

IV.EXPERIMENTAL RESULTS

In this section, we present experimental and numerical

results: a) validating the approximating assumptions of the

model, b) assessing the accuracy of the model, c) evaluating

peer-to-peer performance with and without IoP

A.Validation of approximating assumptions

First, we present experimental results in order to validate the

approximating assumptions of the model (see Subsection

III.B). These assumptions are validated by means of

simulations of a BitTorrent implementation [13] in the ns-2

simulator [14]. Simulation setup includes a topology with 2

equally sized ASes, interconnected by means of an inter-

domain link. Each peer has an access link of 4096/512 kbps

download/upload bandwidth, while the content file size is 80

MB. Moreover, we have taken that all peers, including the

original seed, start at the same time instant (0.0 secs). In our

study, small and medium swarm sizes have been considered

e.g. with 160,...,30,20N peers. Indeed, in reality, a

significant portion of swarms has such populations, according

to the measurements of the sizes of actual swarms in the

Internet presented in [15].

Two-step transition Markov chain. The Markov model

restricts the maximum possible number of downloaded chunks

by a peer per step to 2. The reason for this assumption is two-

fold: 1) It does not give rise to too complicated equations,

while 2) it is a much more realistic and accurate assumption

than taking the maximum number of downloaded chunks by a

peer per step to equal 1.

In order to decide on adopting this assumption, we

monitored the number of the new chunks that every peer

obtains during each choking interval in the regular BitTorrent

where this restriction does not apply. We focus on an

experiment with a swarm having 50 peers monitored for a

period of 50 slots. Approximately 70% of the 2500 samples of

the number of new chunks downloaded per peer and per slot

were equal to 0, 1 or 2. Fig. 2 depicts the average number of

chunks downloaded by all 50 peers of the swarm in each

choking interval. Note that only in less than 20% of the cases

the average number of chunks is greater than 2, yet it is still

less than 2.5 in all such cases. The average number of

downloaded chunks over all peers equals 1.449 < 2. Thus, the

underlying assumption of maximum 2 chunks downloaded per

choking step is satisfactorily accurate.

Fig. 2. Average number of chunks downloaded per choking interval

over all peers.

Native vs. randomized BitTorrent. Performance achieved

in native BitTorrent is compared here to performance achieved

in randomized BitTorrent. By native BitTorrent it is meant that

the choking algorithm and rarest first replication are employed

as peer and chunk selection methods respectively; while by

randomized BitTorrent it is meant that both peer and chunk

selection processes are performed at random. Note that

randomized implementation of BitTorrent is approximated by

the assumptions of the Markov model.

We have run simulations for the implementation of the native

BitTorrent protocol and the randomized one and have

compared them in terms of completion times. In Fig. 3, the

average completion times for swarms of  100,...,30,20N

peers, are presented for the two implementations. Note that

regardless of the swarm size increase, the difference in

completion times between the two implementations remains

almost fixed and bellow 11%; this also holds when other

approaches are employed such as locality awareness, or cache

insertion. Therefore, performance difference between

randomized and native BitTorrent remains fixed. Comparison

of results derived by simulations and by the Markov model is

presented and discussed in Section IV.B.

39 5

Fig. 3. Average download completion times for native BitTorrent (blue), and

randomized BitTorrent (red).

B.Verification of the model

Comparison of simulation results vs. results derived by

the Markov model. We consider the same simulation setup as

in Section IV.A To compare the completion times derived by

simulations (continuous time) to results (steps) derived by

calculation of the Markov chain in Matlab [16] (discrete time),

we have transformed discrete results to continuous, namely by

converting time measured in steps to seconds. As mentioned

above, each step of the Markov model corresponds to one

choking interval, which has duration 10 secs. [5]. Therefore, to

transform steps to seconds, we just need to multiply number of

steps by the duration of the choking interval, e.g. 10 secs. Fig.

4 depicts simulation results for native BitTorrent (blue),

simulation results for randomized BitTorrent (green) and

results derived by the Markov model for 2cl multiplied by

10 secs (red). We observe that relative difference between

calculated results and simulation results (for the native

bittorrent implementation) lies under 5% (except for the case

of 20N swarm); this also holds for different setups,

although the relevant results are not presented due to space

limitations. Thus, the Markov model approximates

satisfactorily the native version of BitTorrent.

Fig. 4. Comparison of average completion times derived by simulations vs.

average completion times (steps×10 sec.) derived by the Markov model.

C. Evaluation results for peer-to-peer properties

Next, we present numerical results calculated according to

the Markov model in Matlab. As stated in Section III.A, one of

objectives of the Markov model is to study properties of the

BitTorrent protocol such as monotonicity w.r.t. the swarm size

and impact of the original seeder‟s capacity.

Monotonicity. We considered swarms with

 160,...,25,20,15,10N peers, each having capacity 2cl ,

and one original seeder with upload capacity 2cs . The file

size is taken 40 MB, thus consisting of approximately 160

chunks of 256 KB each. Note that the Markov chain for this

file size has 161 possible states, e.g. K,...,2,1,0 , and that the

first step when  KPn is non-zero is 81n . This lower bound

follows from the fact that up to 2 chunks per peer can be

downloaded at each step, but only 1 chunk can be downloaded

from the unique original seeder in the 1
st
 step, while the total

number of chunks is 160. We calculated the G-th percentile of

the completion time n* for  99.0,95.0,90.0G . Fig. 5 depicts

n* for different N‟s. Observe that n* increases only slightly

(almost remains stable) as the swarm size increases, which

verifies scalability of this peer-to-peer protocol.

Fig. 5. G-th percentile n* for N={10,15,20,…160} when G={0.90,0.95,0.99}

derived by the Markov model in Matlab.

Impact of the original seeder’s capacity. In [1], Bindal et al.

argue that the original seeder‟s capacity has important impact

on the download times. In particular, they observe that their

biased neighbour selection may deteriorate the completions

times. However, they show that the greater the seeder‟s

capacity, the less the impact of biased neighbour selection on

the completion times. Furthermore, in [17] Le Blond et al.

argue that the original seeder‟s capacity is critical to the high

chunk diversity (higher probability for the peers to find useful

chunks), which impacts the overhead (amount of content that

crosses an inter-ISP link) and peers‟ slowdown (the

experimental peer download completion time normalized by

the ideal completion time).

We considered a swarm with 100N peers with upload

capacity 2cl , and one original seeder with varying upload

capacity ccl  . The file size is again taken to be 40 MB, and

thus the model has 161 again states. Fig. 6 presents the G-th

39 6

percentile n* for  95.0,90.0G attained for different values

of seeder‟s capacity  20,...,4,2c . Note that as the seeder‟s

capacity increases, n* decreases with constant rate, which is in

agreement with the aforementioned results of [1] and [17].

Fig. 6. G-th percentile n* for c={2,4,6,…20} when G={0.90,0.95} derived by

the Markov model in Matlab.

D.Evaluation of IoP cache insertion in Bittorrent network

Next, we present numerical results calculated according to

the Markov model in Matlab for the evaluation of cache

insertion. As stated in Section III.A, the main objective of the

Markov model is to serve as an evaluation tool for certain

optimization approaches of peer-to-peer networks, such as

cache insertion. Below, we present and discuss the impact of

cache insertion on the overall completion times of the whole

swarm and the on upper tail distribution of an individual peer.

Evaluation of IoP cache insertion. In [4], Papafili et al.

have shown by means of simulations on the ns-2 that the

insertion of the IoP in one of the ASes participating in a swarm

results in important reduction of the completion times of the

peers in this AS. Furthermore, it was shown that significant

inbound inter-domain traffic reduction is also achieved for this

AS. However, in its current version, our Markov model does

not incorporate any topology information, and therefore cannot

lead to conclusions on inter-domain traffic. Extending the

model appropriately so as to provide estimates for the volume

of inter-domain traffic is a direction for our future work. Thus,

our main objective is to show that the proposed Markov model

validates simulation results that reveal the positive impact of

the insertion of the IoP on the download times. We considered

the same setup as in Section IV.A for three scenarios: a) no

cache insertion, b) insertion of the IoP, and c) insertion of the

IoS. IoP/IoS are assumed to have upload capacity 10cp .

Fig. 7 depicts the 95-th percentile (95.0G) of the overall

completion time for the three aforementioned scenarios.

Observe that the insertion of IoP improves significantly the

overall completion time especially for small or medium to

small swarms, whereas the insertion of IoS achieves even

higher reduction. As expected, the performance achieved by

the insertion of IoS constitutes lower bound for the

performance achieved by the insertion of IoP. It should be

noted that a rather moderate value for the IoP/IoS capacity has

been chosen. This also has been kept fixed as the swarm size

increases, hence the deterioration of the improvement attained.

Note that in [4], the upload capacity of IoP was 20 times

greater than that of regular peers, whereas here it is only 5

times greater. An ISP could achieve even better performance

improvements for larger swarms by either increasing the

capacity of the IoPs/IoS or introducing more such „small‟

IoPs/IoSs in its domain. Notice that despite its advantage the

IoS insertion is only slightly better than the IoP, since the

phase when the cache acts as leecher is too short compared to

the swarm‟s lifetime. Similar results apply also for 90.0G .

Fig. 7. Comparison of 95-th percentile of completion time for a) no cache

insertion, b) insertion of IoP, and c) insertion of IoS.

Fig. 8 depicts the G-th percentiles of the overall completion

time of the swarm for different values of upload capacity of the

IoP. We observe that the percentile is improved significantly,

up to 13%, when the capacity of the IoP is 20cp , namely 10

times the capacity of the regular peers. Since this is a moderate

value for the upload capacity of the IoP, we expect even lower

completion times for higher values of upload capacity.

Fig. 8. Comparison of G-th percentiles of completion time for upload capacity

of the IoP cp={2,4,6,…,20} for G={0.90,0.95,0.99}.

Finally, we compare the estimates of completion times

derived in [6] and [7] with our outcomes. Indeed, [7] is based

on the assumptions of unconstrained download capacity and

optimal scheduling of chunk selections and uploads; so that

uploading of chunks from one leecher to the others is exploited

39 7

as much as possible. These would give in our case a

completion time per peer of    csKN 212log2  , which

is a very loose lower bound; e.g. for 100N , 161K , and

2cs , this equals 83.41 which is almost equal to the lower

bound of 81 steps calculated by the Markov model. Also, [6] is

based on optimal scheduling; for the cases of Fig. 4, [6] would

give the straightforward lower bound of 80, since each peer

can download at most 2 chunks per slot and the total number

of chunks is 160.

V.CONCLUSION

We have developed and studied a probabilistic model that

employs a Markov chain to approximate the transient

evolution of the BitTorrent peer-to-peer file sharing network,.

This model aims at studying performance properties of the

BitTorrent protocol, as well as at evaluating optimization

approaches applicable to peer-to-peer networks such as cache

insertion. The model estimates the transient distribution of the

number of chunks downloaded by each given peer and from

this other performance measures such as the upper tail of the

distribution of the time required for an individual peer to

complete downloading a file can be also computed.

For tractability, we have adopted certain simplifications of

BitTorrent, such as randomized peer and chunk selections.

Additionally, we have implemented in ns-2 the simplified

version of BitTorrent and have compared the performance

achieved thereby to that of the native BitTorrent. Furthermore,

we have compared native implementation simulation results to

numerical results calculated by the Markov model and have

verified that the Markov model approximates it satisfactorily.

Using our model, we have derived numerical results that

reveal monotonicity of performance of the BitTorrent protocol

with respect to the swarm size. Moreover, we have observed

that results from recent research on the impact of the original

seeder‟s capacity on completion times are also verified by the

Markov model. Finally, we have shown that the insertion of an

ISP-owned Peer or Seed (even with moderate value of cache

upload capacity) considerably improves download completion

times. This is in agreement also with simulation results

presented in [4], as well as with estimation of other theoretical

models as those presented in [6] and [7].

Therefore, the Markov model has proven to serve as a

useful design tool for the evaluation of certain optimization

approaches of the performance of certain peer-to-peer

protocols. Compared to other models in literature that perform

transient analysis of peer-to-peer systems, our model is more

suitable for evaluation of approaches that consider increase or

decrease of the capacity of the system, while it can also be

easily extended to consider exchange of information; future

work in this direction can include extension of the model to

assess the impact of locality awareness.

APPENDIX – EVOLUTION OF THE MARKOV CHAIN

Step 0: D has exactly 0 chunks:    0,...,0,10 P .

Step 1: D can be unchoked only by the seed:

        NCSPPPP  100,000 0101 ,

        NCSPPPP 01,001 0101  ,

      0...32 111  KPPP .

Step 2: D can be unchoked either by the seed or the peers that

were unchoked in step 1:

         CS
NCLNCSPPPP  1100,000 1212 ,

         1,111,001 21212 PPPPP  , where

   

     
,111

11,0

1

2






CS

CS

NCLNCLCSNCS

NCLNCSP

       1
22 1111,1




CS
QNCLNCSP .

Respectively, transition probabilities are calculated for  22P

and  32P using probabilities  22Q and  32Q . Note that the

terms  12Q ,  22Q and  32Q are special cases of  kQn 1 which

is the probability for a peer to find a useful chunk given that it

is unchoked by another peer and it has k chunks at the

beginning of step n+1. Term  kQn 1 is derived at the end of

the Appendix.

Step n: Let         KPPPnP nnn ,...,1,0 be the marginal

distribution of the state of D at step n.

Step n+1: The number  nNs of downloaders influences the

contention among the remaining downloaders; thus it should

be taken into account. We distinguish two cases here:

a) Kn  :   0nNs ; there are N downloaders and only one

seeder in the swarm, and b) Kn  :   0nNs ; some

downloaders may have finished downloading and are serving

as seeders too. We also make use of the distribution of the

number  nNe of peers that have no chunks, since they cannot

serve as sources of chunks for D.

For 0k :      0,000 11   nnn PPP , where

        

  

 

.
1

1

10,0

1

,1














































nNN

s

s
nNnNn

e

se

nNN

CL

nNN

CS
EP

When Kn  , then:

      
 

,
1

101010,0

1

1



 

































N

nnn
N

CL
PP

N

CS
P else:

      

 
  

 
    

.
1

1
1

0
1

1

0

11

1
1

0,0

1

1

0

1
1

xN

n

n

n

n

x

N

x

xN
n

x
nn

xN

CL

KP

P

KP

P

xN

CL

xN

CS

KPKP
x

N
P

















































































 


For 1,...2,1  Kk , the transient distribution is characterized

by the following equation (especially for 1k the 1
st
 term of

the sum is zero):

39 8

           kkPkPkkPkPkP nnnnn ,11,22 111

   kkPkP nn ,1 , where

        

  
 

 

.
1

1

1,

1

1

,1

neNN

se

kQ
nNN

CL

nNN

CS
EkkP

n
s

s
nNnNn















































When Kn  , then:

  









N

CS
kkPn 1,1

      
1

1
1

1010



 



















N

nnn kQ
N

CL
PP , else:

      

 
  

 
    

  .
1

1
1

0
1

1

0
11

1
1

,

1

1

1

0

1
1

xN

n
n

n

n

n

x

N

x

xN
n

x
nn

kQ
xN

CL

KP

P

KP

P

xN

CL

xN

CS

KPKP
x

N
kkP


















































































 


Probability  kkPn ,11  is derived accordingly, however we

do not present here due to space limitations. Since

probabilities  1,21  kkPn and  2,21  kkPn have been

calculated already for smaller states of the current step,

probability  kkPn ,21  can also be easily calculated as:

     2,21,21,2 111   kkPkkPkkP nnn .

Finally, note that the term  kQn 1 is the probability for tagged

peer D to find a useful chunk to download from another peer,

given that D is unchoked by that other peer and D has k

chunks. Analytically, this equals to:

     

 
 

 
 

 
 

 
 .

!1!

!!
1

!1!

!!
1

...
1

21
12

1
11

11

1

1




























































K

kl

n

k

m

n

K

kl

nn

nnn

lP
mK

mmK
mP

lP
kK

kkK
kP

KK
P

K
PkQ

Particularly, term  
 

  














!1!

!!
1

mK

mmK
mPn expresses the

probability for tagged peer D to find a useful chunk to

download from another peer say D‟ that has m chunks, for a

certain km  . This equals the probability of peer D‟ being in

the state m multiplied by the probability that D‟ has a chunk

that is different from the k chunks of the tagged peer D. This

expression is also used in [9], and is a consequence of the

assumption of random and uniform chunk selection. In the

displayed equation above, the last term implies that if another

tagged peer D‟ has even one more chunks than D, then D will

find definitely a useful chunk to download from D‟ (with

probability 1).

ACKNOWLEDGMENT

The authors would like to thank all SmoothIT partners for

useful discussions on the subject of the paper.

REFERENCES

[1] R. Bindal, P. Cao, W. Chan, J. Medved, G. Suwala, T. Bates, A. Zhang,

Improving Traffic Locality in BitTorrent via Biased Neighbor Selection,

26th IEEE International Conference on Distributed Computing Systems,

p. 66, 2006

[2] V. Aggarwal, A. Feldmann, C. Scheideler, Can ISPs and P2P users

cooperate for improved performance?, ACM SIGCOMM Computer

Communication Review, vol. 37, pp. 29-40, July 2007

[3] D.R.Choffnes, F.E. Bustamante, Taming the torrent: a practical

approach to reducing cross-ISP traffic in peer-to-peer systems, ACM

SIGCOMM Computer Communication Review, vol. 38, pp. 363374,

2008

[4] I. Papafili, S. Soursos, G. D. Stamoulis, Improvement of BitTorrent

Performance and Inter-Domain Traffic by Inserting ISP-owned Peers,

6th International Workshop on Internet Charging and QoS Technologies

(ICQT'09), Aachen, Germany, May 2009

[5] B. Cohen, Incentives build robustness in BitTorrent, In Proceedings of

the First Workshop on the Economics of Peer-to-Peer Systems,

Berkeley, CA, USA, June 2003.

[6] R. Kumar, K.W. Ross, "Peer-Assisted File Distribution: The Minimum

Distribution Time", Hot Topics in Web Systems and Technologies,

2006. HOTWEB '06. 1st IEEE Workshop on Hot Topics in Web

Systems and Technologies, Nov. 2006

[7] X. Yang, G. de Veciana, “Performance of Peer-to-Peer Networks:

Service Capacity and Role of Resource Sharing Policies”, Performance

Evaluation, 2006

[8] J. Mundinger, R. Weber, G. Weiss, “Analysis of peer-to-peer file

dissemination”, SIGMETRICS Perform. Eval. Rev. 34, 3 (Dec. 2006)

[9] D. Qiu, R. Srikant, “Modeling and Performance Analysis of BitTorrent-

like peer-to-peer networks”, Proc. ACM SIGCOMM Conference on

Applications, 2004

[10] K. Leibnitz, T. Hossfeld, N. Wakamiya, M. Murata, “Peer-to-Peer vs.

Client/Server: Reliability and Efficiency of a Content Distribution

Service”, Proceedings of the 20th International Teletraffic Congress

(ITC20), Ottawa, Canada, June 2007

[11] Z. Ge, D.R. Figueiredo, J. Sharad, J. Kurose, D. Towsley, "Modeling

peer-peer file sharing systems", INFOCOM 2003, 22nd Annual Joint

Conference of the IEEE Computer and Communications Societies,

IEEE, vol.3, no., pp. 2188-2198 vol.3, 30 March-3 April 2003

[12] B. Fan, D. Chiu, J. Lui, “The Delicate Tradeoffs in BitTorrent-like File

Sharing Protocol Design”, Proceedings of the 2006 IEEE international

Conference on Network Protocols. ICNP. IEEE Computer Society,

Washington, DC

[13] Eger K., Simulation of BitTorrent Peer-to-Peer (P2P) Networks in ns-2:

https://sites.google.com/site/koljaeger/bittorrent-simulation-in-ns-2

[14] The Network Simulator – ns-2 simulator: http://www.isi.edu/nsnam/ns/

[15] T. Hossfeld, D. Hock, S. Oechsner, F. Lehrieder, Z. Despotovic, W.

Kellerer, M. Michel, Measurement of BitTorrent Swarms and their AS

Topologies, Technical Report No. 464, November 2009

[16] The Mathworks: Matlab – The language of technical computing:

http://www.mathworks.com/products/matlab/

[17] S. Le Blond, A. Legout, W. Dabbous, Pushing BitTorrent Locality to the

Limits, INRIA, Dec. 2008

https://sites.google.com/site/koljaeger/bittorrent-simulation-in-ns-2
http://www.isi.edu/nsnam/ns/
http://www.mathworks.com/products/matlab/

