
39 1 

 

Abstract—Peer-to-peer file sharing applications generate huge 

volumes of the Internet traffic, thus leading to increased 

congestion and costs for the ISPs, particularly due to inter-

domain traffic. Thus, analysis of peer-to-peer applications and 

related optimization approaches (such as locality awareness or 

caching techniques) has been the subject of extensive recent 

research.  In this paper we introduce and analyze a probabilistic 

model that employs a Markov chain, aiming to approximate the 

transient evolution of a swarm with a fixed number of peers. This 

model estimates the distribution of the number of chunks already 

downloaded by a certain peer at any time. We also show how this 

model can serve as a tool to analyze certain properties of peer-to-

peer applications, such as monotonicity of performance, and 

primarily to evaluate the effectiveness of cache insertion in a 

network serving peer-to-peer. For tractability reasons, the model 

employs certain simplifications of the original BitTorrent 

protocol, the impact of which is limited as validated 

experimentally. 

 
Index Terms—peer-to-peer, evaluation, Markov chain, 

performance.  

I.INTRODUCTION 

eer-to-peer file sharing systems generate huge volumes of 

Internet traffic, which lead to increased costs for the 

ISPs, particularly for inter-domain traffic. Several approaches 

have been proposed that aim to achieve reduction of the inter-

domain traffic and/or the download times. Most of them try to 

increase the degree of localization of traffic, thus reducing 

inter-domain traffic and possibly improving performance. Such 

approaches either propose biased peer selection [1], or using 

an Oracle service for peer ranking [2] or using existing 

information from content distribution networks [3]. In [4], 

Papafili et al. introduced a different approach, namely the 

insertion of resourceful overlay entities (referred to as ISP-

owned Peers, IoPs). IoPs participate actively in the peer-to-

peer swarm and exchange data chunks with regular peers, thus 

serving as transparent and non-intercepting caches, which 

however initially have to acquire the content too.  

In this paper, we focus on BitTorrent [5] as it is the most 

popular peer-to-peer file sharing application; however, our 

study can be also extended to bittorrent-like streaming 
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applications such as Tribler. In particular, we develop a 

Markov model for a BitTorrent swarm with a fixed number of 

peers. This model estimates approximately the transient 

distribution of the number of chunks already downloaded by a 

certain peer at any time.The model can serve as a tool to 

analyse certain properties of BitTorrent and to evaluate the 

impact on performance of cache insertion in the form of an 

IoP. It should also be noted that for the latter purpose a model 

for the transient evolution of the swarm is much more suitable, 

because the insertion of an IoP mainly aims to have a positive 

impact in the beginning, where most of the leechers in a swarm 

are lacking the largest part of the shared content. Once this 

purpose is attained, then the IoP can devote its resources to 

another swarm, rather than remain in the previous one. 

The remainder of this paper is organized as follows: In 

Section II, a brief overview of articles on BitTorrent modeling 

is presented. In Section III, we propose a Markov model for 

the evaluation of cache insertion in BitTorrent networks; 

motivation, assumptions and evolution are described here. In 

Section IV, results for simulative evaluation of the 

approximating assumptions of the model are presented; then, 

we validate the Markov model‟s results with results derived by 

means of simulations; and finally, we present evaluation 

results acquired by use of the Markov model on the impact of 

cache insertion in BitTorrent network. Last, in Section V, we 

conclude our contribution. Detailed equations of the Markov 

model are given in the Appendix. 

II.RELATED WORK 

There is an extensive literature on peer-to-peer performance 

evaluation. Many relevant works are exclusively based on 

analysis of measurements from actual systems and/or 

simulations. In this subsection, we overview selected articles 

that include models for the performance evaluation of peer-to-

peer file-sharing with emphasis on BitTorrent and we 

comment on their relation with our work. . Evaluation results 

attained by models that apply to the steady-state of a 

BitTorrent swarm cannot be compared to results attained by 

our model. On the other hand, comparison of our results with 

those attained by models for transient analysis is meaningful 

and is presented at the end of Section IV. 

In [6], Kumar and Ross analyze the minimum distribution 

time for a file in a system with seeds and leechers. In 

particular, by employing a deterministic fluid-flow model, they 

provide a lower bound that involves the download and upload 

rates of the various peers and then show that this bound can 

indeed be achieved by scheduling the various transfers of the 

file appropriately.  
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In [7], Yang and de Veciana initially deal with the capacity 

attained in peer-to-peer systems due to their fundamental 

feature that each peer can serve other peers while still 

downloading the missing content. The authors thus develop a 

simple deterministic model that shows the effect of this feature 

in the transient case similar to that of our model, with only one 

of the peers storing initially the content file. In particular, it 

follows that the average delay per peer is logarithmic in the 

number N of peers. Moreover, if the file is partitioned into m 

chunks, then due to pipelining, the average delay is reduced by 

a factor of m. The authors of [7] also develop a two-

dimensional Markov model for the steady state analysis of the 

system. The problem of calculating the completion time is also 

studied by Mundiger et al. in [8], under more general 

assumptions. These authors derive the optimal centralized 

upload schedules both for the case of a central server and for 

the case of a decentralized system with all peers having equal 

capacities. They then develop another model for the transient 

evolution of a peer-to-peer system, whereby the number N(t) of 

peers that have already downloaded the file by time t is 

modeled as an age-dependent branching process with a family 

size of 2 in each generation. Therefore, the expected value 

E[N(t)] grows exponentially with time t, provided that there is 

sufficient demand in the system.   

In [9], Qiu and Srikant initially present a deterministic fluid 

model for the performance of BitTorrent. The model of [9] is 

motivated by the Markov model of [8] and comprises the same 

parameters. The authors present (among others) a probabilistic 

model for the evaluation of the parameter  that expressed the 

effectiveness of BitTorrent in the sense of the degree of the 

contribution of each downloader to the other ones. In 

particular, this model quantifies the probability  that a 

particular downloader has a chunk that is among the ones 

needed by another one. In fact, the assumptions made with 

respect to the distribution and selection of chunks possessed 

by a peer are the same to those our model, as described in 

Section III.B. It turns out that  kNNlog1 , where k is 

the total number of chunks of the file. This implies that for a 

large file (i.e. for a large value of k), 1 ; that is, a 

downloader contributes to the others almost as much as a seed.  

In [10], Leibnitz et al. present a fluid flow model for 

evaluating the transient performance, in particular reliability 

and efficiency, of content distribution services that can be 

realized by traditional client/server (C/S) architectures or peer-

to-peer networks involving malicious peers.  

Besides [8], several articles deal with the steady-state 

performance analysis of BitTorrent with dynamically varying 

population. Next, we briefly overview selected such articles. In 

[11], Ge et al. present a steady-state queueing model that 

comprises all the main ingredients of a peer-to-peer file 

sharing system, while applies to a variety of such systems. This 

model is then solved analytically by means of an 

approximation based on bottleneck analysis, and it is validated 

by means of simulations. The work of Fan et al. in [12] deals 

with an important tradeoff arising in BitTorrent, namely: 

achieving fast downloads vs. keeping “fat” (i.e. resourceful) 

peers in the system as much as possible in order to help other 

peers attain a fast download. The latter objective appears to be 

unfair for the fat peers, thus giving rise to a tradeoff between 

performance and fairness (i.e. better service for peers 

contributing more to the system), which is investigated in the 

paper by means of steady-state analysis. 

III.THE MARKOV MODEL 

A.Motivation 

As already stated, the Markov model proposed in this paper 

models a BitTorrent swarm, namely an overlay network for the 

sharing of one file. We focus on BitTorrent since it is the most 

popular file sharing application. The purpose of the Markov 

model is the analysis of certain properties of BitTorrent, such 

as monotonicity and scalability of performance, and primarily, 

the evaluation of cache insertion as a means to achieve 

performance improvement. As already explained in Section I, 

by caches we mean overlay entities that participate actively in 

the peer-to-peer network and exchange data chunks with 

regular peers. These entities are referred to as ISP-owned 

Peers (IoPs) [4].  

A Markov chain is employed to estimate approximately the 

transient distribution of the number of chunks downloaded by 

each peer. Based on this, we can also estimate other 

performance measures such as the upper tail of the distribution 

of the time required for a peer to complete downloading a file. 

For the purpose of analytical tractability, the model employs 

certain simplifications of BitTorrent; thus, it is expected that 

its outcomes will constitute bounds for the corresponding 

metrics of the actual BitTorrent. 

The Markov model in its present state can be employed for 

studying the following issues: 

 Monotonicity of completion times in a BitTorrent network 

for different numbers of regular peers;   

 Impact of the insertion of an IoP on performance; tradeoff 

w.r.t. the associated capacity of the IoP; 

 Impact of insertion of mere IoPs with heterogeneous 

capacities; tradeoff w.r.t. the number and capacity of the 

IoPs. 

For each one of the cases involving IoP(s), the transition 

probability matrix of the Markov chain is slightly different 

than that of the first case without IoP. Moreover, the model 

can easily be extended to other cases and scenarios where 

other optimization approaches, e.g. locality awareness, are 

employed. 

In the subsections III-B and III-C, we present the basic 

assumptions, the rationale and basic equations that describe 

the evolution of the Markov chain. 

B.Assumptions 

Our Markov model is a discrete time model; i.e. time is 

slotted. Originally, we consider 1N peers in the swarm; 

namely, N downloaders with initially 0 chunks, and 1 seeder 

which has all K chunks. Moreover, for simplicity we assume 

that after a downloader finishes its downloading then it turns 

into a seed, namely it does not leave the swarm. (By 

introducing minor modifications to the formulation, the model 
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can accommodate other assumptions on this issue.) The 

population of peers remains constant.  

Next, we present our assumptions on the modeling of the 

peer-to-peer application. First, we assume random chunk 

selection, instead of BitTorrent‟s rarest first replication. Due to 

symmetry among chunks in their initial distribution, the 

system‟s state is fully specified by the number of chunks that 

each peer has acquired until the end of step n, or equivalently 

by the number of peers out of N that have 0, 1, …, or K chunks 

at step n. Therefore, the number of different states with this 

formulation would be equal to the number of choosing k 

elements out of n with repetition: 
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Due to the prohibitively large state space we resort to an 

approximation, which is motivated by the fact that due to 

symmetry the evolution of the marginal distribution of the state 

any given peer is same as that of any other peer. Let D be a 

tagged peer out of the set of the N downloaders. The state of D 

(as well as that of any other peer) belongs to  K,...,2,1,0 . The 

objective of the model is to derive this marginal distribution of 

the state of the tagged peer D. Furthermore, for simplicity 

reasons, we assume that at every step n, only 0, 1 or 2 chunks 

can be downloaded by each peer, regardless of how many 

peers have unchoked this peer; additionally, each peer can be 

unchoked by every other peer only once. As already mentioned 

chunks are selected at random and uniformly. Thus, all chunks 

that D is missing are considered useful and assumed to be 

sought simultaneously. We have assumed that a peer can 

download up to 2 chunks at each step since we have measured 

by means of simulations that the number of chunks 

downloaded per peer in each choking interval is in general less 

than or equal to 2. This is supported by the calculations above 

and by the experimental results presented in Section IV. 

Second, BitTorrent‟s choking algorithm, the well-known „tit-

for-tat‟, is ignored; unchokes are given to peers randomly 

selected out of the set of potentially interested downloaders. 

Each peer has the possibility for cl  unchokes; parameter c 

represents the minimum of a) the actual number of unchokes 

that each peer possesses (by the BitTorrent protocol) and b) of 

the number of unchokes possible due to the upload bandwidth 

capacity bottleneck in this peer. For instance, the protocol 

allows each peer to unchoke up to 5cl other peers per 

choking interval. In order to derive results comparable with 

results attained by the simulations, we take 2cl . For 

instance, a peer with nominal upload bandwidth equal to 512 

kbps is able to upload/serve only 2 chunks. Indeed, 512 kbps 

corresponds to 64 KB/s upload. In an interval of 10 secs, this 

corresponds to uploading 640 KB, which is slightly higher that 

2x256 KB (where 256 KB is the size of a chunk).  

Due to the aforementioned assumptions, our Markov model 

corresponds to a version of BitTorrent where all decisions are 

made randomly, and thus is expected to have inferior 

performance compared to the original BitTorrent. 

Consequently, the estimates obtained by our model are 

expected to constitute upper bounds of the actual performance 

of the BitTorrent protocol. 

C.Evolution of the Markov Chain 

First, we consider modelling the native BitTorrent protocol. 

The transient marginal distribution of the state of a regular 

peer D at step n is denoted         KPPPnP nnn ,...,1,0 , 

where    kXkP nn  Pr . The transient distribution at step 

n+1 is derived as follows: 

     
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where the transition probability  kkPn ,21   corresponds to 

the event that peer D is unchoked by and finds useful chunks 

in two or more other peers at step n+1, given that peer D has 

2k  chunks at the end of step n; transition probability 

 kkPn ,11   is defined similarly, while  kkPn ,1  is the 

transition probability that peer D is either choked by all peers 

or does not find any useful chunk at any peer he is unchoked 

by, given that it has k chunks at step n. The three transition 

probabilities sum to 1. 

The calculation of the transient probabilities at every step is 

an iterative process; the procedure is depicted in Fig. 1. Due to 

the fact that population size N is fixed, there is a deterministic 

upper bound in our setting for the overall completion time. 

Since the completion time of the last peers might be quite 

large, this upper bound can be loose. Thus, we choose to 

consider the G-th percentile of the overall completion time; 

that is step n*, when a large portion of the peers (say 90% or 

95%) will have finished downloading; that is, they have K 

chunks. Using the transient marginal distribution of the state of 

D, it follows for   GKPnnn n  :min*:* , where G will be 

taken either 0.90 or 0.95. Additionally, we also consider the 

average completion time among all peers, which is 

  





1
1:

n
n KPn . 

 
Fig. 1. Iterative process. 

The equations that characterize the Markov chain evolution 

are given in the Appendix. These equations involve also the 

distribution of: a) the number  nNs  of downloaders that have 

K chunks at step n, and b) number  nNe of downloaders that 

have 0 chunks at step n. Note that the corresponding sets of 

downloaders are non-overlapping. Since K is large, 

initially   0nN s , while as time progresses   0nNe . As an 

approximation, these random variables are taken to be 

independent. Moreover, their distributions are approximately 

taken as binomial, i.e.: 
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This amounts to taking that the event where a certain peer is 

in state 0 (or resp. in state K) is independent of the 

corresponding events for other peers; note that all these events 

are identically distributed. 

Next, we consider the insertion of an IoP with higher 

capacity than regular peers in the BitTorrent overlay. For this 

case, the transition probability matrix of the basic Markov 

chain is modified as follows: Due to the higher capacity, we 

assume that the IoP is always unchoked twice by the original 

seed; namely the IoP downloads 2 chunks at every step with 

probability 1, both of them from the original seeder. Note that 

the IoP behaves as a regular peer until step 2Kn  , and from 

that step ahead as a seeder. In order to further study the impact 

of the IoP on peer-to-peer performance, we also considered a 

third case, namely, the insertion of the ISP-owned Seed (IoS) 

scenario, i.e. the insertion of a second seeder again with higher 

capacity than the original regular one. Performance 

improvements achieved by the insertion of the IoS are 

expected to constitute an upper bound to the performance 

improvements achieved by the insertion of IoP. 

IV.EXPERIMENTAL RESULTS 

In this section, we present experimental and numerical 

results: a) validating the approximating assumptions of the 

model, b) assessing the accuracy of the model, c) evaluating 

peer-to-peer performance with and without IoP 

A.Validation of approximating assumptions 

First, we present experimental results in order to validate the 

approximating assumptions of the model (see Subsection 

III.B). These assumptions are validated by means of 

simulations of a BitTorrent implementation [13] in the ns-2 

simulator [14]. Simulation setup includes a topology with 2 

equally sized ASes, interconnected by means of an inter-

domain link. Each peer has an access link of 4096/512 kbps 

download/upload bandwidth, while the content file size is 80 

MB. Moreover, we have taken that all peers, including the 

original seed, start at the same time instant (0.0 secs). In our 

study, small and medium swarm sizes have been considered 

e.g. with 160,...,30,20N  peers. Indeed, in reality, a 

significant portion of swarms has such populations, according 

to the measurements of the sizes of actual swarms in the 

Internet presented in [15]. 

Two-step transition Markov chain. The Markov model 

restricts the maximum possible number of downloaded chunks 

by a peer per step to 2. The reason for this assumption is two-

fold: 1) It does not give rise to too complicated equations, 

while 2) it is a much more realistic and accurate assumption 

than taking the maximum number of downloaded chunks by a 

peer per step to equal 1.   

 

In order to decide on adopting this assumption, we 

monitored the number of the new chunks that every peer 

obtains during each choking interval in the regular BitTorrent 

where this restriction does not apply. We focus on an 

experiment with a swarm having 50 peers monitored for a 

period of 50 slots. Approximately 70% of the 2500 samples of 

the number of new chunks downloaded per peer and per slot 

were equal to 0, 1 or 2. Fig. 2 depicts the average number of 

chunks downloaded by all 50 peers of the swarm in each 

choking interval. Note that only in less than 20% of the cases 

the average number of chunks is greater than 2, yet it is still 

less than 2.5 in all such cases. The average number of 

downloaded chunks over all peers equals 1.449 < 2. Thus, the 

underlying assumption of maximum 2 chunks downloaded per 

choking step is satisfactorily accurate. 

 
Fig. 2.  Average number of chunks downloaded per choking interval 

over all peers. 

Native vs. randomized BitTorrent.  Performance achieved 

in native BitTorrent is compared here to performance achieved 

in randomized BitTorrent. By native BitTorrent it is meant that 

the choking algorithm and rarest first replication are employed 

as peer and chunk selection methods respectively; while by 

randomized BitTorrent it is meant that both peer and chunk 

selection processes are performed at random. Note that 

randomized implementation of BitTorrent is approximated by 

the assumptions of the Markov model. 

We have run simulations for the implementation of the native 

BitTorrent protocol and the randomized one and have 

compared them in terms of completion times. In Fig. 3, the 

average completion times for swarms of  100,...,30,20N  

peers, are presented for the two implementations. Note that 

regardless of the swarm size increase, the difference in 

completion times between the two implementations remains 

almost fixed and bellow 11%; this also holds when other 

approaches are employed such as locality awareness, or cache 

insertion. Therefore, performance difference between 

randomized and native BitTorrent remains fixed. Comparison 

of results derived by simulations and by the Markov model is 

presented and discussed in Section IV.B. 
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Fig. 3.  Average download completion times for native BitTorrent (blue), and 

randomized BitTorrent (red).  

B.Verification of the model 

Comparison of simulation results vs. results derived by 

the Markov model. We consider the same simulation setup as 

in Section IV.A To compare the completion times derived by 

simulations (continuous time) to results (steps) derived by 

calculation of the Markov chain in Matlab [16] (discrete time), 

we have transformed discrete results to continuous, namely by 

converting time measured in steps to seconds. As mentioned 

above, each step of the Markov model corresponds to one 

choking interval, which has duration 10 secs. [5]. Therefore, to 

transform steps to seconds, we just need to multiply number of 

steps by the duration of the choking interval, e.g. 10 secs. Fig. 

4 depicts simulation results for native BitTorrent (blue), 

simulation results for randomized BitTorrent (green) and 

results derived by the Markov model for 2cl multiplied by 

10 secs (red). We observe that relative difference between 

calculated results and simulation results (for the native 

bittorrent implementation) lies under 5% (except for the case 

of 20N  swarm); this also holds for different setups, 

although the relevant results are not presented due to space 

limitations. Thus, the Markov model approximates 

satisfactorily the native version of BitTorrent.  

 
Fig. 4. Comparison of average completion times derived by simulations vs. 

average completion times (steps×10 sec.) derived by the Markov model. 

C. Evaluation results for peer-to-peer properties 

Next, we present numerical results calculated according to 

the Markov model in Matlab. As stated in Section III.A, one of 

objectives of the Markov model is to study properties of the 

BitTorrent protocol such as monotonicity w.r.t. the swarm size 

and impact of the original seeder‟s capacity. 

Monotonicity. We considered swarms with 

 160,...,25,20,15,10N  peers, each having capacity 2cl , 

and one original seeder with upload capacity 2cs . The file 

size is taken 40 MB, thus consisting of approximately 160 

chunks of 256 KB each. Note that the Markov chain for this 

file size has 161 possible states, e.g. K,...,2,1,0 , and that the 

first step when  KPn  is non-zero is 81n . This lower bound 

follows from the fact that up to 2 chunks per peer can be 

downloaded at each step, but only 1 chunk can be downloaded 

from the unique original seeder in the 1
st
 step, while the total 

number of chunks is 160. We calculated the G-th percentile of 

the completion time n* for  99.0,95.0,90.0G . Fig. 5 depicts 

n* for different N‟s. Observe that n* increases only slightly 

(almost remains stable) as the swarm size increases, which 

verifies scalability of this peer-to-peer protocol. 

 
Fig. 5. G-th percentile n* for N={10,15,20,…160} when G={0.90,0.95,0.99} 

derived by the Markov model in Matlab. 

Impact of the original seeder’s capacity. In [1], Bindal et al. 

argue that the original seeder‟s capacity has important impact 

on the download times. In particular, they observe that their 

biased neighbour selection may deteriorate the completions 

times. However, they show that the greater the seeder‟s 

capacity, the less the impact of biased neighbour selection on 

the completion times. Furthermore, in [17] Le Blond et al. 

argue that the original seeder‟s capacity is critical to the high 

chunk diversity (higher probability for the peers to find useful 

chunks), which impacts the overhead (amount of content that 

crosses an inter-ISP link) and peers‟ slowdown (the 

experimental peer download completion time normalized by 

the ideal completion time). 

We considered a swarm with 100N peers with upload 

capacity 2cl , and one original seeder with varying upload 

capacity ccl  . The file size is again taken to be 40 MB, and 

thus the model has 161 again states. Fig. 6 presents the G-th 
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percentile n* for  95.0,90.0G  attained for different values 

of seeder‟s capacity  20,...,4,2c . Note that as the seeder‟s 

capacity increases, n* decreases with constant rate, which is in 

agreement with the aforementioned results of [1] and [17]. 

 
Fig. 6. G-th percentile n* for c={2,4,6,…20} when G={0.90,0.95} derived by 

the Markov model in Matlab. 

D.Evaluation of IoP cache insertion in Bittorrent network 

Next, we present numerical results calculated according to 

the Markov model in Matlab for the evaluation of cache 

insertion. As stated in Section III.A, the main objective of the 

Markov model is to serve as an evaluation tool for certain 

optimization approaches of peer-to-peer networks, such as 

cache insertion. Below, we present and discuss the impact of 

cache insertion on the overall completion times of the whole 

swarm and the on upper tail distribution of an individual peer. 

Evaluation of IoP cache insertion. In [4], Papafili et al. 

have shown by means of simulations on the ns-2 that the 

insertion of the IoP in one of the ASes participating in a swarm 

results in important reduction of the completion times of the 

peers in this AS. Furthermore, it was shown that significant 

inbound inter-domain traffic reduction is also achieved for this 

AS. However, in its current version, our Markov model does 

not incorporate any topology information, and therefore cannot 

lead to conclusions on inter-domain traffic. Extending the 

model appropriately so as to provide estimates for the volume 

of inter-domain traffic is a direction for our future work. Thus, 

our main objective is to show that the proposed Markov model 

validates simulation results that reveal the positive impact of 

the insertion of the IoP on the download times. We considered 

the same setup as in Section IV.A for three scenarios: a) no 

cache insertion, b) insertion of the IoP, and c) insertion of the 

IoS. IoP/IoS are assumed to have upload capacity 10cp . 

Fig. 7 depicts the 95-th percentile ( 95.0G ) of the overall 

completion time for the three aforementioned scenarios. 

Observe that the insertion of IoP improves significantly the 

overall completion time especially for small or medium to 

small swarms, whereas the insertion of IoS achieves even 

higher reduction. As expected, the performance achieved by 

the insertion of IoS constitutes lower bound for the 

performance achieved by the insertion of IoP. It should be 

noted that a rather moderate value for the IoP/IoS capacity has 

been chosen. This also has been kept fixed as the swarm size 

increases, hence the deterioration of the improvement attained. 

Note that in [4], the upload capacity of IoP was 20 times 

greater than that of regular peers, whereas here it is only 5 

times greater. An ISP could achieve even better performance 

improvements for larger swarms by either increasing the 

capacity of the IoPs/IoS or introducing more such „small‟ 

IoPs/IoSs in its domain. Notice that despite its advantage the 

IoS insertion is only slightly better than the IoP, since the 

phase when the cache acts as leecher is too short compared to 

the swarm‟s lifetime.  Similar results apply also for 90.0G .  

 
Fig. 7. Comparison of  95-th percentile of completion time for a) no cache 

insertion, b) insertion of IoP, and c) insertion of IoS. 

Fig. 8 depicts the G-th percentiles of the overall completion 

time of the swarm for different values of upload capacity of the 

IoP. We observe that the percentile is improved significantly, 

up to 13%, when the capacity of the IoP is 20cp , namely 10 

times the capacity of the regular peers. Since this is a moderate 

value for the upload capacity of the IoP, we expect even lower 

completion times for higher values of upload capacity. 

 
Fig. 8. Comparison of G-th percentiles of completion time for upload capacity 

of the IoP cp={2,4,6,…,20} for G={0.90,0.95,0.99}. 

Finally, we compare the estimates of completion times 

derived in [6] and [7] with our outcomes. Indeed, [7] is based 

on the assumptions of unconstrained download capacity and 

optimal scheduling of chunk selections and uploads; so that 

uploading of chunks from one leecher to the others is exploited 
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as much as possible. These would give in our case a 

completion time per peer of    csKN 212log2  , which 

is a very loose lower bound; e.g. for 100N , 161K , and 

2cs , this equals 83.41 which is almost equal to the lower 

bound of 81 steps calculated by the Markov model. Also, [6] is 

based on optimal scheduling; for the cases of Fig. 4, [6] would 

give the straightforward lower bound of 80, since each peer 

can download at most 2 chunks per slot and the total number 

of chunks is 160. 

V.CONCLUSION 

We have developed and studied a probabilistic model that 

employs a Markov chain to approximate the transient 

evolution of the BitTorrent peer-to-peer file sharing network,. 

This model aims at studying performance properties of the 

BitTorrent protocol, as well as at evaluating optimization 

approaches applicable to peer-to-peer networks such as cache 

insertion. The model estimates the transient distribution of the 

number of chunks downloaded by each given peer and from 

this other performance measures such as the upper tail of the 

distribution of the time required for an individual peer to 

complete downloading a file can be also computed.  

For tractability, we have adopted certain simplifications of 

BitTorrent, such as randomized peer and chunk selections. 

Additionally, we have implemented in ns-2 the simplified 

version of BitTorrent and have compared the performance 

achieved thereby to that of the native BitTorrent. Furthermore, 

we have compared native implementation simulation results to 

numerical results calculated by the Markov model and have 

verified that the Markov model approximates it satisfactorily.  

Using our model, we have derived numerical results that 

reveal monotonicity of performance of the BitTorrent protocol 

with respect to the swarm size. Moreover, we have observed 

that results from recent research on the impact of the original 

seeder‟s capacity on completion times are also verified by the 

Markov model. Finally, we have shown that the insertion of an 

ISP-owned Peer or Seed (even with moderate value of cache 

upload capacity) considerably improves download completion 

times. This is in agreement also with simulation results 

presented in [4], as well as with estimation of other theoretical 

models as those presented in [6] and [7]. 

Therefore, the Markov model has proven to serve as a 

useful design tool for the evaluation of certain optimization 

approaches of the performance of certain peer-to-peer 

protocols. Compared to other models in literature that perform 

transient analysis of peer-to-peer systems, our model is more 

suitable for evaluation of approaches that consider increase or 

decrease of the capacity of the system, while it can also be 

easily extended to consider exchange of information; future 

work in this direction can include extension of the model to 

assess the impact of locality awareness. 

 

APPENDIX – EVOLUTION OF THE MARKOV CHAIN 

Step 0: D has exactly 0 chunks:    0,...,0,10 P . 

Step 1: D can be unchoked only by the seed:  

        NCSPPPP  100,000 0101 , 

        NCSPPPP 01,001 0101  , 

      0...32 111  KPPP . 

Step 2: D can be unchoked either by the seed or the peers that 

were unchoked in step 1: 

         CS
NCLNCSPPPP  1100,000 1212 , 

         1,111,001 21212 PPPPP  , where  

   

     
,111
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1
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
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CS
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NCLNCSP
  

       1
22 1111,1




CS
QNCLNCSP . 

Respectively, transition probabilities are calculated for  22P  

and  32P using probabilities  22Q and  32Q . Note that the 

terms  12Q ,  22Q and  32Q are special cases of  kQn 1 which 

is the probability for a peer to find a useful chunk given that it 

is unchoked by another peer and it has k chunks at the 

beginning of step n+1. Term  kQn 1 is derived at the end of 

the Appendix. 

Step n: Let         KPPPnP nnn ,...,1,0  be the marginal 

distribution of the state of D at step n.  

Step n+1: The number  nNs of downloaders influences the 

contention among the remaining downloaders; thus it should 

be taken into account. We distinguish two cases here: 

a) Kn  :   0nNs ; there are N downloaders and only one 

seeder in the swarm, and b) Kn  :   0nNs ; some 

downloaders may have finished downloading and are serving 

as seeders too. We also make use of the distribution of the 

number  nNe of peers that have no chunks, since they cannot 

serve as sources of chunks for D. 

For 0k :      0,000 11   nnn PPP , where  
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For 1,...2,1  Kk , the transient distribution is characterized 

by the following equation (especially for 1k  the 1
st
 term of 

the sum is zero):  
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           kkPkPkkPkPkP nnnnn ,11,22 111  

   kkPkP nn ,1 , where 

        

  
 

 

.
1

1

1,

1

1

,1

neNN

se

kQ
nNN

CL

nNN

CS
EkkP

n
s

s
nNnNn















































 

When Kn  , then:  

  









N

CS
kkPn 1,1

      
1

1
1

1010



 



















N

nnn kQ
N

CL
PP , else: 

      

 
  

 
    

  .
1

1
1

0
1

1

0
11

1
1

,

1

1

1

0

1
1

xN

n
n

n

n

n

x

N

x

xN
n

x
nn

kQ
xN

CL

KP

P

KP

P

xN

CL

xN

CS

KPKP
x

N
kkP


















































































 


 

Probability  kkPn ,11  is derived accordingly, however we 

do not present here due to space limitations. Since 

probabilities  1,21  kkPn  and  2,21  kkPn  have been 

calculated already for smaller states of the current step, 

probability  kkPn ,21  can also be easily calculated as:  

     2,21,21,2 111   kkPkkPkkP nnn . 

Finally, note that the term  kQn 1 is the probability for tagged 

peer D to find a useful chunk to download from another peer, 

given that D is unchoked by that other peer and D has k 

chunks. Analytically, this equals to: 
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Particularly, term  
 
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











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!1!

!!
1

mK

mmK
mPn expresses the 

probability for tagged peer D to find a useful chunk to 

download from another peer say D‟ that has m chunks, for a 

certain km  . This equals the probability of peer D‟ being in 

the state m multiplied by the probability that D‟ has a chunk 

that is different from the k chunks of the tagged peer D. This 

expression is also used in [9], and is a consequence of the 

assumption of random and uniform chunk selection. In the 

displayed equation above, the last term implies that if another 

tagged peer D‟ has even one more chunks than D, then D will 

find definitely a useful chunk to download from D‟ (with 

probability 1). 
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