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Abstract—In designing and managing a shared infrastructure
one must take account of the fact that its participants will
make self-interested and strategic decisions about the resrces
that they are willing to contribute to it and/or the share of
its cost that they are willing to bear. Taking proper account
of the incentive issues that thereby arise, we design mechiams
which, by eliciting appropriate information from the parti cipants,
can obtain for them maximal social welfare, subject to charing
payments that are sufficient to cover costs. We show that ther
are incentivizing roles to be played both by the payments thiawe
ask from the participants and the specifiation of how resoures
are to be shared.

New in this paper is our formulation of models for designing
optimal management policies, our analysis that demonstrats the
inadequacy of simple sharing policies, and our proposals fasome
better ones. We learn that simple policies may be far from opimal
and that efficient policy design is not trivial. However, we fnd
that optimal policies have simple forms in the limit as the number
of participants becomes large.

Index Terms—Communication system economics, Grid com-
puting, Incentives, Mechanism design, Scheduling, Virtuzation.

I. INTRODUCTION

appropriate incentives are in place, the economic perfoc@a

of the resulting system may be greatly reduced. This raises
the question of how a shared facility should be managed
so as to resolve the unavoidable conflicts that arise between
participants and to share the operating cost.

One way to share the cost of building a facility is to
require participants to pay fees. Another way is to add togret
actual resources that participants contribute, the sumhagiw
defines the size of the virtual facilityn this latter case, we
say that the participants are makipgyments in kindWe
might, in this case, operate a policy of asking each pagitip
to choose for himself a quantity of resource that he will
contribute to a shared pool of resources, and then say that
at all future instants the resource pool will be shared arabng
any participants who wish to draw upon it in proportion to the
sizes of their contributions. The participant who contrésu
more will receive more. But might the system work better if
the resource is shared in proportion to some other function o
their contributions? It is questions like this that we addre

The problem of policy design for computing facilities is
certainly not trivial, as has been observed in [1], [2], [Bim-
ple policies may perform very badly if they do not incent&iz

NFRASTRUCTURE virtualization is a powerful tool to-participants truthfully to reveal privately-held infortien re-
wards the creation of a global computing and comm@arding the utility they will obtain from a given allocation

nication infrastructure. It allows organizations to cogie

of resources.There is recent work in [4], [5] concerning

and contribute physical resources to the creation of virtudie definition of accounting requirements for grids, which
facilities involving networking or computing and storagesuggests that more sophisticated policies can be impledent
Examples include virtual networks, computational gridsl arin practice.

service clouds. Such facilties are shared by participating!n this paper we look at a number of models, making various
organizations and support specific services, applicatimms assumptions about the parameters that can be measured, and
scientific experiments. Although virtualization techngjchas discuss tools for defining optimal policies. These poliaes
made significant progress, there remain many interestinlg g#esigned to incentivize truthful revelation indirectly, bffer-
unanswered economic questions about the business moditgseach participant a choice of options and then observing
that can make such virtual infrastructures viable. which of them he chooses. More specifically, agents’ bids
In this paper we make the fundamental assumption thégtermine resource-sharing contracts. These contraetsfsp
each participant is an economic agent who profits fromihat quantities of resource each agent will obtain in each
using the common infrastructure, but that the value whidpssible circumstance that some subset of agents wish to
he places upon being allocated a quantity of resourcesdi@w on the resource pool simultaneously. The parameters
private information. His incentive is to obtain for himselff the contracts become finalized once all agents have made
as great as possible value from the shared infrastructure ff@eir bids. Each participant is incentivized to bid truthfu
service), while contributing minimally to the costs of itd-€. to reveal his true valuation for the given service. The
formation and maintenance. The result is that the partitipa resulting contracts provide optimal resource sharingjesiio
individual aims are not aligned with overall system effidgn a constraint that the fees paid by the agents cover costsisin t

This is an important observation and suggests that unless todel the rules of running the system are defined as functions
of the bids of the participants. We are effectively designin
C. Courcoubetis is with the Department of Computer Scierfdbens

University of Economics and Business, Athens 11362, GREE@&Hail:
courcou@aueb.gr

R. Weber is with the Department of Pure Mathematics and Madtieal
Statistics, University of Cambridge, Cambridge CB3 0OWB, ,U&mail:
rrwl@cam.ac.uk

Work of both authors has been partially supported by the FRjeqt
Gridecon.

rules for a game (in which the agents play strategically)
such that at thgBayesian)Nash equilibrium the economic
efficiency is maximized. Our approach leverages ideas from
the theory for optimal auctions [6] and mechanism design [7]
to the context of shared infrastructure design and manageme
We must stress that the mathematics involved in construct-



ing optimal policies in the context of incomplete infornmati find mechanisms that can compute (in polynomial time) both
can be very elaborate and rarely leads to simple analytiwentive payments and an allocation of jobs to machines, an
solutions. However, we can learn about some general featuobtain a makespan that is no more than some factor from
that good policies should hav&o in sections that follow optimal in the worst case. In addition to the emphasis on
we look at a number of carefully chosen examples, many pblynomial-time computation, there are two other differes
which concern systems with just two participants. They &b our work: (i) there is no notion of any a priori distributis,
concern problems of efficiently sharing infrastructure agsi and so incentive compatibility conditions are to hold exstpo
participants who hold private information. These examples and (ii) there is no constraint on the budget that is avaslabl
sufficiently simple that they can be solved, and their sohgi pay agents to reveal information (or conversely, a corstrai
point up important issues, challenges and future reseatblat payments taken from agents must cover cost).
directions, some of which we summarise in Section IX. We The paper is organized as follows. In Section Il we introduce
do make the critical assumption that agents know the valaemodel for sharing an infrastructure of a given size and then
they place on being allocated resources, and also know tirevide an example in Section Ill. Section IV considers a
distributions of the private valuations of other agentsvéfdo problem of determining the infrastructure siddwe supporting
not make those assumptions, then mechanism design probtagory for sections |-V isn Section V. It is also applied to a
trivializes or has not enough structure to lead to a solutioscheduling a server in Section VI. In Section VII we discuss
More work is needed to refine our results and investigatiee inefficiencies of simple policies. Finally, in Sectionlly
their translation to practical implementations, i.e. imipan we look at how the design problem simplifies as the number
job scheduling policies of existing systems, see [8] and [9]of participants becomes large. We draw out some interesting
Previous work on computational grids has recommend&sbsons for practice in Section IX.
the formation of a market for computation and the use of
prices at a heuristic level to guide resource sharing, ség [1 Il. A MODEL EOR INFRASTRUCTURE SHARING
[11], [12]. In this market providers (sellers) and consusner ) ) )
(buyers) of computing resources go to trade. In [13] an opéh Sharing a given infrastructure
market for trading computational resources is proposeat, th We begin by presenting a model for optimally sharing an
operates similarly to the stock market double auction mod@ifrastructure amongst participating users (or agents). Our
except that commaodities are perishable. The market matcimegion of an infrastructure is one that we deliberately keep
the asks and bids, just as in the stock market, and allocatgste general. It is composed of resources (such as links,
resources accordingly. If it is competitive, then the markservers and buffers) and it can be operated in various ways
allocates resources efficiently, see [14], [15]. Orgaibrast (by choice of scheduling, routing and the manner in which
will decide how much infrastructure to self-procure and howesources are shared by the agents). Ledenote the set of
much to obtain from the market based upon the equilibriuadl such ways that the infrastructure can be operated.
market price and on the statistics of their demand for com-To provide an example, let us introduce what we shall
putation, see [16]. This approach is sensible when ressurcell the scalar resource sharing modeln this model the
are commoditized and the market is competitive. i.e. thereinfrastructure can be parametrized by the quamjityf a single
a large number of buyers and sellers for each resource typesource. This might be the bandwidth of a communication
Our approach differs from the above, but is complementalipk, or the cycles available in a computational grid. A mann
and makes no assumption on competition. It is not based @hoperation (i.e. a membes of 2) is specified by a vector
a market; rather itregulatesthe system by setting rules toxy,...,z, denoting the allocations of the resource that are
which participants must abide and a policy for sharing theade to the agents, whepe, z; < Q. The infrastructure is
resource pool and covering its cost. It is appropriate whém be shared amongst agents on a sequence ofldays. . .
organizations may collaborate over a long period of timeegit There is daily operating cost, which we assume to be a
(i) to share the cost of running an existing facility, or @{© constantc, for all w € . This may include interest payments
create a new shared virtual facility, by each contributiopal on capital investment.
computing resources (or by providing finance for purchasingGiven that the infrastructure is operated at dag manner
and maintaining those resources). Case (i) is common where €2, the utility for agent is u;(w|6; ;), where{0; 1 }1=1 2,...
the infrastructure is initially created using public fundj and is an ergodic process-or convenience in exposition, let
(if) is common in large e-science projects, e.g., [17], [18ls suppose a product forf ;u;(w). The functionu,(-) is
[19], [20], and in other virtual facility building projectike public knowledge, bub; ; is known only by agent and is
Onelab [21] and PlanetLab [22]. Our approach allows fandependent of othef;;, j # . Essentially, one can think of
long-term predictable contracts, in which participantskena { (u1(w), ..., u,(w)) : w € Q}, as a set of achievable points,
contributions in kind (infrastructure). This can be preéerto whose values to the agents are uncertain to the operatoe of th
the uncertainty of fluctuating prices in a dynamic market. facility because only the agents kn@w . . ., 6, ;. However,
Mechanism design problems for scheduling have been cainis public knowledge, a priori, tha#; ; is a sample of a
sidered by the computer science community, but with quitandom variable with distribution functioh;. In practice, the
different objectives. In a problem addressed in [23] and [24; might be constrained to a finite set of distributions, each
jobs must be allocated to machines which are strategic associated with a certain organization typef|§ = 0 then
revealing their processing times for the jobs. The aim is #gent: does not need to use the resource at day



We wish to operate the facility so as to maximize the totalchieved by a central controller who has complete inforomati
expected net benefit to the participating agents, subjeet t@bout agent preferences and who has full centralized dontro
constraint that they pay enough to cover a daily operatirsgj cd his can happen in what we shall call thdl informationcase,

c. In doing this, we are to choose aperating policy say M, i.e. when the operator of the system can somehow access the

implemented in two steps, as follows. true values of the; ;s.
M1 (the rules) The agents are told that as a function of There are many ways that perfect competition can fail. One
declaredd, = (014, ...,0,4) is if agents collude. Another is if agents have private infar

tion; in our models we call this thpartial information case,

(a) the operating policy iM2 will be chosen using the e e
function w(-); i.e. the operator and agents know only a priori distribugioh

(b) the payments on day will be determined by the 6;+s. Now one must be content withs&cond-besallocation
functionp(-) = (p1(-), - -, pu(-)). of resources. The second-best is achieved by the system

M2 (the game) Knowing all data (that is, g, u;, for all designer imposing rules (for a auction, or other mechanism

: . _ : design) so that when independent agents act strategically i
j €{lL,...,n}), his owndi, and the functions;(-) and .their own self-interests, (in respect of actions and anyapely

p('). in M1, ar_1d assum!ng all other_ "?‘ge”ts. are truthiul 'Reld information that such actions may reveal) then within
their declarations, agemthas a priori incentive to declare . . o
. the resulting non-coopertative game, the equilibrium (orst
truthfully his 6; ;. Lo .
. o equilibrium if there are more than one) has the greatest
Given the declarations dfy ¢, ..., 0y, steps (a) and (b) possible efficiency.
are now implemented. Given any set of operating rules (not necessarily those

In M1 the functionsw(-) andp(-) define a game in which for which second-best efficiency is obtained) the teprite
agents participate by declaring values for their privakeigwn Of anarchyis used for the quotient between the first-best
0;.:. We wish to choose(-) andp(-) so that at an equilibrium social welfare and the social welfare that is obtained at the
of this game some objective is achieved. For example, W@rst of the possible non-cooperative equilibria. Somesm
might seek the greatest possible sum of agents' utilitid§ie price of anarchy tends to 1 as the number of participants
This makes our problem one afiechanism desigiwe now bPecomes large. This happens in a bandwith sharing problem
sketch, so far as space allows, those basic elements of forfRavhich the heuristic control is an auction, [25], and in whni

mechanism design theory that are relevant. For more def@insequently the quotient between first-best and secostd-be
readers are referred to [7]. welfares also tends to 1. We see this also in Theorem 3 of

Let (n,0_;,) be shorthand for6y,...,n,...,0,,) and Section VII-B. However, in [26] we have considered a peer-
E_y,, denote expectation over an_’t for which j - . If to-peer file-sharing system and shown that a heuristic ofalfix

agenti declaresf; , = n then his payoff is hisxpected net Participation fee is asymptotically as good as second;best
benefit ’ that the price of anarchy remains bounded away from 1.

E_ai,t [eiui(w(nv e—i,t)) —Di (777 9”)] (1)

Suppose this game hasBayesian Nash equilibriurat which
each agent declares the true value ofthis i.e. no agent can  In the full information case the best way to operate the
improve his expected net-benefit by unilaterally depariogn ~ System on day would be by choosing € 2 as the maximizer
a strategy of making truthful declarations. The teBayesian Of the social welfare giving
refers to the fact that each agent calculates his expected ne n
benefit while knowing theF;, the distributions of all other w(by) = argmax{z 0; 1ui(w) — C}, (2)
agents'd;;s, (and that they will declare thegg,s truthfully. “

The revelation principlestates that nothing is lost by '€ £ the system is operated daily using®,), then as each day

stricting attention to mechanisms whose equilibria arehsuc e
: . IS statistically the same, the long run average socal welar
that all agents make truthful declarations (so-caltécbct- y g g

B. The full information case

i=1

mechanisms Doing so imposes afncentive compatibility n

conditionthat agent should be made to reveal truthfully his B, | Y 0isu(w(fy)) — C} : 3)
privately-knownd; .. This is what we are saying in M2, and i=1

in condition C1 of in Section II-C. If (3) is negative then there is no way to run the system so

We may immediately distinguish two important cases. Léhat costs are covered. If (3) is nonnegative then one calld a
us recall that in welfare economics an allocation of resesircfrom agent; a daily paymenp; that is less than his expected
is calledPareto-efficientf no agent’s position can be improvedbenefit of Ey, [6; ;u(w(6;))], also choosing;,...,p, so that
without making some other agent’s position worse. Any allg>, p; = c¢. Then each agent gains positive net benefit and
cation that maximizes social welfare is Pareto-efficiene Whe total payments cover cost. The paymgnineed not be
measure an agent’s position is measured by (1) and soci@netary. Instead, agentould be asked to contribute a fixed
welfare by (3) and (4), below. guantity of virtual resources that is of valpg i.e. to make a

A first-best (Pareto-efficient) allocation of resources igpayment in kind
achieved when goods and services are traded in a perfectlyVe can now also define anfrastructure optimization prob-
competitive free market. The same efficiency can also bEm Suppose that there is a possible spaa# infrastructures,



i.e. 2 € O, each with a given cost(2). The problem is to timet, depend on a-length history of declarations up to time

choosef) € © that maximizes the social welfare t, {0:+—rt1,...,0:}. The best policy of this type is surely very
n complicated to derive. We look at two extreme cases:
Ey, Z@i,tui(w(Q,Ht)) —c(Q)], 4) — one-shot participationthe facility runs for one day or
i=1 forever, but each agent remains in the system for only one

wherew(Q, 6;) denotes the optimal operation of the specifif@y (and sor = 1);

infrastructuref). — long-term participation the facility runs forever and the
To make things concrete, we now assume the scalar resoli@ge agents participate each day (so effectivelyt).

sharing model. The séb of possible infrastructures might be The ex-ante versions of C1-C3 are natural for models with

© = {Q : Q > 0}. The daily cost of the facility is:(Q). infinite repetition, where by the law of large numbers the

Suppose that) is given. In the full information case, theagents and the facility operator see time averages of profits

optimal allocations are given by and cost covering payments. The one-shot scenario differs i
n the facility runs only once because, as the operator does not
2*(6,, Q) = arg_max Z&-,tui(xi) . (5) See time averages, covering cost should be ex-post.
> =< (i
The infrastructure optimization problem is 1. EXAMPLE OF SHARING A FIXED RESOURCE

n

29i7tu(m,’f (Ht,Q))] - c(Q)}. (6) Let us take the scalar resource sharing model with-

i=1 2 agents andl = 1. We analyse memoryless mechanisms.
On dayt, agent: has utility ¢; ,u;(x) for resourcer, where
0;1,0;2,..., are independent samples frdif0, 1].

max{E
Q

C. The patrtial information case

In practice, thef; ; are usually private information of the
agents and they will act strategically when asked to reve The cases;(z) =
them. An agent might choose to declare an inaccurate valu%S we see in Section V, ifu;(z) = « then optimal

of 6;, in order to obtain a larger resource share. To incentivizg, -hanisms allocate the resource (if at all) wholly to the
trut_hful declarations the operat_or must introduce paymerggem declaring the greate®t;. This makes the solution to
which que”d on t_hose declarations. NOV_V age_mclares%,t our mechanism design problém equivalent to that of an optima
to maximize(1), his expected net benefit. This leads to thg,tion and we can directly translate resule now describe
type of game described in Section Il-A. At the Bayesian Na%me possible policies. In what follows, we drop the suffix

equilibrium, we wich the following conditions to be satisfie from 6; ,, since we now think about a memoryless mechanism
C1. Incentive compatibility Agents should find it in their applied on a typical day.

interest to be truthful in declaring thefy ;. The first-best policy This allocates the full resource to the
C2. Participation (also called individual rationality)Agents agent having maximurfy. Using the fact that the maximum of

should see positive net benefit from participation. two independent random variables, each uniformly distetu
C3. Cost coverage (also called budget-balancBpyments g, [0,1], has mear2/3, we have

should cover the cost(Q).
C4. Maximum expected social welfare (total net benefit)
attained (subject to C1-C3).

Each of C1-C3 can be imposed in two senses. Consider a
7 and let 9_,'7,5 = (917,5, ey 9i_17t, 91'_‘_17,5, Ceey 9,”7,5). The ex-
ante (weak) sense means that for@ll the condition holds
in expectation, beforé_; ; is known to agent (and assuming
truthful declarations by all other agents). For example 323,
in the scaler resource sharing madélis means

E{ max (6121 + 921‘2):| = E[max(6:,62)] = 2/3,

z1+x2<1

%n}are ex i i i

pectations are with respectég 6,. So if agents
are truthful about thei; without the mechanism needing
incentivize this, then the expected social welfar@ /8 — c.

What happens if we try to use the above sharing policy, but
take no payments from agents, and so offer no incentives for
them to be truthfulTlearly, every agent will declarg; = 1,

Ey_,, [0isu(zi(6:) — pi(6:)] > 0. (7) and the operator might flip a coin to decide on the allocation.
The social welfare becomely/2 — ¢, substantially less than
the first-best oR/3 — c.

Second-best mechanismset us now examine some mech-

0; qu(z;(0:)) — pi(6:) > 0. (8) anisms that maximize social welfare under constraints G1-C
Similarly, ex-ante and ex-post versions of C3 &igpi (0;) + The first mecha_nism sgtisfies all the const_raints ex-ar_1te. Th_
' second mechanism satisfies the cost covering constraim C3 i

vt pa(0h)] 2 candpy(6) + -+ pa(01) > . the stronger ex-post sense, but constraints C1-C2 ex-Eimte.
Observe that the class of policies discussed so far 5

restricted to those that are memoryless. More generall wIrd mechanism is Vickrey auction type of mechanism that
X YI€ss. 9 Y: Whiisfies constraints C1-C2 ex-post and C3 ex-ante.
could make the choice af, or the allocation of resources at

The ex-post (strong) sense means that for all possjhle_; ;
the condition holds. For C2, this means



Mechanism 1:This operating rule of this mechanism carurning to Mechanisms 2 and 3, it is interesting to compare
be seen as arising from (21) Section V-B and its paymenrtechanism 1 to a heuristic polidy which might be used by a
from (23). The operating rule, M1(a), is that amongst thoseon-sophisticated facility operator. The social welfao¢ained
agents declaring; > 6 the resource is wholly allocated to theby H is also shown in Figurel.

one who declares the greatést If neither declare®; > 0, A heuristic policyH: Suppose the operator posts a price
then no resource is allocated. The valuefok a parameter anq ask both agents whether or not they are willing to pay this
of the mechanism. The payment rule, M1(b) is that if agentyyice in return for use of the resource. If just one is willing
declares; then he is charged then he is allocated the resource and gay§both are willing
pi(6:) = %(91'2 +§2)1{97’>§}. 9) then the resource is randomly gllocated to one of them (by
symmetry) and he pays Otherwise no resource is allocated
Let z;(01,62) be 1 or O as the item is or is not allocatecind no payment is taken. The valueyois chosen so that the
to agenti, when the agents declare their parameters to becial welfare is maximized, subject to ex-ante covering.of
01,02. Agent 1, who is assuming that at equilibrium agent Zhe best choice of is found by solving the problem
is declaring truthfully, declared = 7 to maximize his ex-ante

net benefit of
12, a2 1.2, 2 It turns out that the optimab is p = 1/3 if ¢ < 0.296, and
Eo, [0121(n,02) = 5(7° + 0%)] = 01n — 5(n* +6%). (10) o " = o oot of 1 — p?)p = ¢, if 0.296 < ¢ < 0.385.
This incentives; = 0, for 6, > 0, so ex-ante C1 holds. The Mechanism 2:The allocation rule is as in Mechanism 1,
maximized ex-ante net benefit j67 — 6%) > 0, so ex-ante but we adjust the payments so that C3 holds ex-post. This can

C2 holds. B be done by making agentpay pi (61, 62) = ¢/2 + p1(61) —
The value offl is chosen so that ex-ante C3 holds, i.e.  p,(d,), with p;(¢;) as defined in (9), i.e.

maximize (1 — p*)3(1+p) s.t. (1 —p*)p > c.

1 _ 1 1(p2 | P2 _ 192 | g2 _
¢ = Eg 0,[p1(61) + pa(62)] = 2[ Lw? + 0%) dw P1(01,02) = 3¢+ 3001 + 090,50y = 502 + 0) L0y,
" " v and similarly for agent 2. Note that C1 and C2 continue to
=3+0°-30° (11) hold ex-ante becausgy, [p1(01,62)] = p1(f1) as in (9). Such

The right hand side increases frdn3 = 0.333 to a maximum an adjustment can always be made; if there weegents one

IUE (g) = L 0) — LS (p.
of 5/12 = 0.4166, as¢ increases from 0 td/2. Thus any cost could take?,(e) n© +p‘(9’_) n—1 Z#Z P (0;)- _
can be covered, up 10.4166. Mechanism 3:The allocating rule is as in Mechanism 1.
In Figure 1 we plot the value of the expected social welfa/ds an application (24agentl pays
as a function of, and compare it to the first-best valughe _ ] _
L : i .y p1(01,02) = max(0,02)1 9, 5 max(a,
qualitative lessons are that first-best and second-bestidei o 1(61,02) (_ 2) 01> (9’92)_} _
if ¢ is small, but second-best is strictly worse:iis large. For and similarly, agent 2. It gives a second-price (or Vickrey)

very largec it is impossible to cover costsit is easy to check auction. Itis easy to check that C1-C2 hold ex-post. Morgove
# can be chosen so cost coverage is ex-ante, since it can be
easily checked thaky,p;1(01,02) = p1(61) as in (9).

Mechanism 4 (for long-term participation)How might
we exploit the fact of long-term participation? Might sirapl
mechanisms be more appropriate? Indeed this is true, as the
following mechanism shows.

— At each timet, ask the agents to declare théjr, and
award the resource to the agent declaring gre#est

— Police the declarationsmake sure that in the long run
the empirical distribution of the declared values of the
matchesF;. If this is not the case then penalize agerty
imposing an appropriate charge.

— Assuming that agents are truth-telling, compute the ex-
pected benefit of each agent at each timiaen just as in our
analysis of the full information case, split costarbitrarily
Fig. 1. Comparison of expected social welfares, as funstii, for first-  INtO ¢ and ¢z, so the expected benefit of agenis at least
best (solid line), second-best (dashed line) and a heurfist{dotted line). It ¢;, and then use these fixed charges at each time
o (L1t e s s o 1S SO e w22 As we prove in Secion V-A, his simple policy incentivizes
second-best mechanism. truthful declarations. It also satisfies ex-ante C2 becautiee

long run each agent will have positive net benefit.
that the mechanism does not achieve any of C1-C3 ex-postOur discussion to this point shows that operating policies
As we now show with Mechanisms 2 and 3, it is possiblmay be very sensitive to modelling details. Policing is a
to strengthen the ex-ante constraints to ex-post onesereitpractical option only when the same set of agents with known
for C3, or for C1 and C2, but not for all. However, beforgrofiles are sharing the facility in a repeated fashion; ggs
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a special structure to the problem that allows us to achietle infrastructure is shared among the agents accordirgeto t
the same efficiency as in the full-information case. Howgevenfinite repetition model introduced in Section 1I-A in whic

if agents change from day to day, or policing is not possibbgents reveal their actual daily valuations.

then we must to do something more interesting and nontrivial Let us suppose a model in which if the infrastructure is
We have seen that there can be several versions of secargkrated at day in mannerw € €, the utility for agenti
best mechanisms; which we prefer can depend on whichisfg;0; ;u(w), where¢; is the type of the agent and); ; is
constraints C1-C3 ought to be respected ex-post (or e}-arits normalized valuation of the service at the given daks

in given practical circumstances. before, it is public knowledge, a priori, thai; is a sample
of a random variable with known distribution functidn, but
B. The caseu;(z) =27, 0 < B < 1 its true value is known only to agent Now, for eachi, 6, ;

With wi(2) — 2% (0 < 8 < 1) the story changes, in that the'S also private information with a known distributiai,. A

) ‘way to interpret this is thaf; ; states in a relative scale how
resource is no longer wholly allocated to the agent de(ga”?/aluable the service is o ac entand multiplying it with ¢;
greates®, ;. It turns out that under a second-best mechanism 9 pying !

. L . -~ .~ “rescales this to its actual value. For instart;g,could take a
the optimal division ofQ into x; and 2z, does not maximize : . : ’ L
3 8 ; ; . value in {1 (low), 2 (medium), 3 (high), and multiplying it
01.x] + 02425 (as it would be for first-best). There is an . .
efficiency loss in inducing incentive compatibility. Thisilw =Y ¢ 16ads to the actual service valuation. Or we could have
y 9 P Y- that ¢, ; is uniform on[0, 1], and ¢, is uniform on|0, M], in

become clear in Section V-B. which casep;0; ; is uniform in[0, ¢;]. Hence the type of agent
Suppose that agents are identical and the common distribu- LUt ) € lype otag
tion of 6; , has density functiorf. Define, forA > 0, 1 1S needed in .order to determine fglly the distribution of the
’ parameterd, ; in the model of Section II-A.
9(6;) =0; — (1 —F(6;))/f(6;) (12) Our mechanism now is a modification of M that can be
B n described as follows.
fn(6:) = (0 + Ag(0:)) ™ (13) Mt The agents are told that as a function of declaped
We see in Section V that the optimal sharing policy is found  (¢1,...,¢n)
by solving a Lagrangian dual problem: (a) the facility Q(¢) € © will be chosen;
2 (b) the operating policy for declared will be w(6;, ¢);
min{E max ZhA(Qi)x?] —(1+ ) } (c) the payments for declare@h will be p(6;,¢) =
A>0
This means thats;(6:,60,)  hy(6;)/(—. Notice that if MT2 Knowing all the above, and assuming all other agents

niresl i=1 (pl(eta¢>a"'apn(9ta¢>>'
\ = 0 this means allocating the resource in the most efficient ~ @re truthful, C1-C3 hold at the equilibrium and agent

way, i.e. to maximize}_, 6;u(x;). However, for a mechanism i has a priori incentive to declare truthfully his, and

parameterized by > 0, the resource is allocated differently. subsequently at every dayhis 0; ;.

There is af, such that an agent who declarés < 0 is Given declarations ofgy,...,¢,, step (a) is imple-

allocated no resource. Whety > 6, > 6, agent 1 receives mented once at the start, and then, giden, ..., 0,

a greater share of the resource than he would in an efficient steps (b) and (c) are implemented daily.

allocation. We findr, (61, 02)/x2(61, 6>) is increasing in. This model of facility building has both one-shot and
As ) increases fron to oo the cost that is being covered byyepeated components. The initial component is one-shot. On

the mechanism is increasing. Fér= 1/2, this means we can e pasis of declared,, ..., 4., the choice ofQ and the

coverc < 0.2344 with A = 0, and thenc € [0.2344,0.4413] g nctions w(f;, ¢) and p(f;,$) are specified. Each agent
by taking A € [0, 00). The mechanism is complicated, but the,nq the operator) can now estimate average net benefit (and
results of its application can be calculated numericallg an reyenye) throughout the future and might be inclined todeav
figure produced that is very similar to Flgu_re 1. We r_eturfhe system (decline to operate) if this estimate is negaiis
to the issue of calculating payments for this mechanism #y4gests that constraints C2-C3 must hold ex-post in regard
Section V-B. Similar stor!es are true.lf there are more thand step (a). However, as regards to the repeated component of
agents. However, numerical calculations can be intragtabl steps (b) and (c) they need only hold ex-ante. In genera, it i
impossible for all of C1-C3 to hold ex-post, but it becomes
IV. BUILDING AN OPTIMAL INFRASTRUCTURE possible as the number if agentstends to infinity.

We return now to the infrastructure optimization problem Let us now describe a model that we shall often use.
that we touched upon briefly in Section II-B, in whichwe use the terminologgctivity modelto refer to modelling
the declarations of the agents are also used to choose assumptions that the utility for agentis ¢;0; ,u(-), where
size of the infrastructure. There are now two stages in thg, € {0, 1}, truthful declaration of); ;, takes place automati-
implementation of a mechanism. In the first stage agerdally, and¢; is private information, with a priori distribution
declare their ‘types’, that can be interpreted as how vadiabb;. This gives a model in which agents are either ‘active’ or
is using the infrastructure on fypical day. As a function ‘inactive’, i.e. are only interested in using the infrastiure on
of these declarations the operator decides on the size of smene days, and given that agéns active, she has always the
infrastructure and on the payment functions and allocatisame utility functiong;u(-). Assume that{6; ;};=12... IS an
rules that will be used in the second stage. In the seconcephasyodic procesd.et «; be theactivity frequencyf agent, i.e.



the probability that; ; = 1. Define the probability that on athe system will operates for a long time near its steadyeptat
given day the set of agents who wish to use the infrastructuke can be doubled. One can show (though we omit further
S is a(S), whereS C {1,...,n}. We assume that on anydetails) that if this policer is employed then agéntaximizes
particular day the value & is known, since there is no reasorhis long-run average net benefit by respecting the constrain
why any agent would pretend she wishes to use the resoutttat the empirical distribution of hig; ; matchesU|0, 1].
when she cannot benefit from doing so, or pretend she canApplying Theorem 1 (below) we can conclude that subject
benefit from using it when she could. This is by the samte this constraint he does best by being truthful.

arguments as in the proof of Theorem 1, Section V-A. Once we know that agents are truthful, the problem simpli-
Consider the scalar resource sharing model, with the activiies since we can then use (5) to make an optimal resource

model assumptionsy = 2, u(x) = x, and a priori¢; ~ allocation for each vectot, = (01 ¢,...,0n.+).

UJ0,1]. Suppose thab = {Q : 0 < Q < 1} and¢(Q) = Q. It remains to check that the combination of the allocation

Let @; =1 — «y. The first best optimum would be mechanism (5) and the policing mechanism described above

- - does actually incentivize agents to be truthful. We need to

Eor<nq§w<(1{(0”052¢1 +az01¢2 + a1z max(¢1, ¢2))Q _VQ} check that there is no equilibrium which achieves a better
+ payoff and in which agents sometimes report th&iy in

= (041542¢>1 + a@1¢ + a1 max(¢1, ¢a) — ’7) . (14) a non-truthful way. To check this, we start by noticing that

the payment ofp; that is to be taken from agerntis fully
Eae\f:”(g;athgf) 1: ¢+ Ag(¢), where forg; ~ U[0,1] we  yotarmined by public knowledge df, ..., F,, and so does
g =2¢— 1.

: . not depend on the agent’s declarationggf, 0;., ... . Let
As \(/jveb see fro_ml thelftheo_ry in Section V the value of thﬁs now consider whether it could be advantageous for agent
second-best social weliare Is i to decide that whenever hi ; takes the valu@; he will
min{Emm [(m@zhx(%) + andiiha(¢2) declare it to bey; (possibly even randomizing). The policing
AZ0 . mechanism constraing, to have the same distribution as
+ aragmax( hx(é1), ha(da) ) — (1+ A ., (15) f;. Subject to this constraint, the agent wishes to maximize
10g max(i (1), ha(¢2)) = (1+ X)) |} E[6:Vi(8))], whereVi(6;) = Eq_,[u(x:(6,))[6:.0 = 6,].
which also provides a way of finding the appropriate value of Theorem 1:Suppose that when agetithas 6;;, = 6;
A. This leads to a mechanism in which agémarticipates he declares it a®; (possibly randomizing), subject to the
only if ¢; > ¢ (defined byh,(¢) = 0), andQ =10rQ =0 constraint that the unconditional distribution éf must also

as the term is round brackets above is positive or not. be F;. Given that the resource is to be allocated according to
declaredd, , and by using (5), the agent maximizes his net
V. THEORY benefit by always being truthful, i.e. withf = 6;.
This section contains the theory underlying Sections I[I- Proof: Given thatu;(x) is concave increasing im; and

IV. We separately consider the scenarios in which a set of(f:) is determined by (5) the functiol;(-) must be non-
agents interacts over a long period of time (our ‘long-teriecreasing. We now use the Hardy-Littlewood rearrangement
participation’ model) or on just a single day (our ‘one-shdfiequality, which generalizes to integrals the simple thet
participation’ model). It is interesting that in the first thiese giVen anyas, ..., a, andbi, ..., b,, theny_, a;b; < 37, a;b;,
scenarios a simple policy that uses policing can asymatibic where the starred sequences are rearrangements of theabrigi
obtain the same social welfare as the first-best policy, gsst Sequences into increasing order. Takin@;) = 0; and
when there is full information. b(6;) = E[V (6;)|0:], we haven™ (6;) = 6; andb*(6;) = V(6;),

and obtain

A. Long-term participation: incentive compatibility aeied E[0;Vi(8))] = E[@E[W(%)I&]} :/ ab S/ a*b*
by policing 0; 0;
The key idea is that long-term participation makes it pos- = E[0:Vi(0,)].

sible to incentivize agents to be truthful by policing theisg there is no reason for agento be other than truthfulm

declarations. We may threaten to impose a very large fine

upon agenti, or to exclude him from participation, if the

empirical distribution of his declareé; ;,6;2,... does not

converge to the publicly knowi;. There are many ways in Now we turn to the more difficult circumstance in which it is

which this might be done. For example, it is the uniform Not possible to police the parametérs because the scenario

distribution on|0, 1] we might partition[0, 1] into N equally IS one-shot. Our discussion focuses upon a typicalidayet

likely subintervals of widthl/N. We then run leaky bucket wi(z:|t;) denote the utility of agentfor allocation of resource

policers for each of these subintervals. Each bucket cahdrol #:- It is a function of his privately known parametéy. A

infinite number of tokens, and receives tokens at a ratepsfr  SPecial case of this model ig (x;[6;) = 0;u(x;), as assumed

N days. A token is removed from the bucket corresponding fitherto. Another special case is

the subinterval of0, 1] in which a declared, ; falls; if there 0
ui(x]0;) = { ’

B. One-shot participation: optimal auctions

is no token in that buffer, then agentobtains no resource.

After many days (which should be exponentialif so that r—(1-b)z, r=12...



for 0 < r < 1. This models a scheduling problem, to bé&Jpon substituting; = #; and integrating, this gives
discussed in Section VI, in which there ateunit length jobs,
each belonging to an agent; a subset of them us chosen f%(@i) = pi(0) + Z

. . . u;(]0;)1i (20;)
processing and scheduled in some order. If the job of agent

i is completed after a time, then he gains utility — ~;z, 0,
where~; = 1 — 6; is a per unit cost of delay. The allocation —/ %ui(ﬂsi)wi(ﬂsi)dsi]. (19)
x = 0 indicates that the job is not processed. 0

As usual, the a priori distribution of; is F;, which is By taking an expected value of (19) with respecttausing
known to all agents and the system operator. Based on tltifegration by parts, and then summing @mwe find that the

information, the operator imposes on the agents a mechanigi.ante cost-covering constraint can be written as
say M. This is the same as M, except that we now allow

the choice of operating mode to be a randomized choice . 4 .
within Q, say taking the values with probability g(w|6;). sz(o) +E9{ Z;[“l(mw’)
The payments arg;(w, 6;), i = 1,...,n. Specification of the ' '
functionsq(-|-) andp;(-,-) are part of the rules of M _ l}f};(,a)i)%Ui(ﬂ@i)}%(ﬂ@)} > e

We now drop the suffix, writing 8; (and @), in place of o ‘
0, (and®;). For simplicity, let us suppose that for every pur yiect to this constraint, we wish to maximize (16). The
choice ofw, the allocationz;(w) takes one of the values in decision variables are the,(0) (which are to be< 0) and
a finite set, sayX (e.g. X = {0,1,...,Q}). Let us denote the v;(z0), i € {1,....n}, = € {0,1,...,Q} (vVhich are
probabilities for agent being allocated:, conditional ond or to be in [0,1], as well as consistent with the randomized

ond;, as choice ofw € Q). The fact that we allow the choice of
bi(z|0) = P(as(w) = z]0), to be randomized means that the set of all possible choices
of decision variables is convex. All decision variables eqp
Yi(x]0;) = P(zi(w) = x|0;) = Eo_,1(x|0). linearly in both the objective function and constraint, aud

the problem can be solved by considering maximization of a

It is because M allows randomization over the choice of J_rilgrangian of

that these variables can take values strictly between 0 an

We also denote ex-post and ex-ante payments as
P pay LEG{ZZ (1 + Nui(]6,)
pi(0) = Eyjopi(w, 0), pi(0i) = Eg_,pi(0). i
The aim of the operator is to design a mechanism maximiz- — )\%9(9)) %iui(xwi)] wi(x|9)}
ing total expected net benefit of

—(L+Xc+ 2> pi(0). (20)

EQ{ZZ“i(mlei)wi(x|9)} - (16)

i

This can be maximized pointwise for eaghand the statement

subject to C1-C3. The ex-ante net benefit of agest of the theorem now follows. [ |
Let us make some remarks.
bi(0;) = i()0:)0s(x)0;) — pi(0;). 17 ; . -
nbi(6:) zz:u (202w (10:) = pa:) (47 1. The assumption that;(w) takes values in a finite set

o is simplifying for exposition, and useful in some examples.
For simplicity, suppose that;(z[0) = 0 for all z. However, if 2 has a continuous domain we may replace
Theorem 2:There existsA > 0 such that the optimal >, ... ¢:(x[0) by [, ...4;(2|0)dz, with ¢ now a density.
mechanism design (satisfying ex-ante C1-C3) chooses 2. Theorem 2, its proof, and remark 3 recast, in the context
function of  to maximize of our models, standard arguments from the theory of optimal
R0 8 auctions and mechanism design, as expounded in [6] and
Z{(“F)‘)“i(f”iwi) — Ao a_eiui(xﬂoi)] (18) [7]. There is one difference in that we seek to maximize
i social welfare, whereas in an auction one is usually seeking
Proof: The ex-ante expected net benefit of agergiven to maximize a principal’s profit.
in (17), is continuous and differentiable #. Assuming that 3. Consider the scalar resource sharing examples in Sec-
the F; are continuous, this is due to the averaging that takéiens Ill-A and IlI-B, where we hadi;(;|0;) = 0;u(z;). The
place overd_; when obtainingu; (xz|0;) = Ey_,u;(z|0). The coefficient ofX in (18) isg;(0) = 6 — (1 — F;(0))/fi(0). The
ex-ante incentive compatibility constraint C2 means that choice ofw in (18) becomes the problem

truthful declaration off; maximizes agent’s expected net
benefit. Using (17), this provides a stationarity condifithrat maXimize{Z(t% + )\gi(ei))u(xi)}, (21)
declaringf; = 1, Y.< |5

Zui(zwi)gwi(xm), D p.(n) = 0. Assume g;(-) is nondecreasing (as is the case for many
- on on distributions), and le#; be the leas#; for which it is profitable



to allocate resource to ageit.e. 6; + \g;(6;) > 0 for 6; > 6; VI. AN APPLICATION TO SCHEDULING A SERVER
in (21). To calculate the payments, define Suppose that each of agents has a single unit length job

Vi(w) = By, [u(ml(w,%))], (22) which he wishes to have proces_sed, an(_j with minimum_delay
cost. An operator owns a machine. He is to decide which of
and similarlyV,(-). Upon declaring); agenti must pay the agents’ jobs to process and how their processing is to be
0, ordered. Suppose that the utility to ageitfthis job is finished
pi(0;) = 0,V (0;) —/ Vi(w) fi(w)dw, 6; >0;, (23) after atimex; is u;(x;) = r; — v;x;, wherey; =1 —6; is
bi the per unit time delay cost ar] is private information of
and 0 otherwise. agent:. If his job is not processed utility is 0. To indicate that

This mechanism satisfies the ex-ante versions of C1-C3alfob is not processed we can let = 0, with u;(0) = 0.
is possible, as above, to alter the mechanism so that ex-pBgppose that a prio#; is distributed uniformly or0, 1] and
version hold, either for C3, or for C1 and C2. For exampléhe r;s are known. Since jobs are of unit length, = j if

ex-post C1-C2 are achieved by agent 1 paying, agenti’s job is processedth in the sequence. The operator
wishes to maximize the expected sum of net benefits, subject
p1(61,02) = Oru(w:1(61,62)) to obtaining payments from the agents sufficient to cover the

b 0 d o4 cost of operating the machine, Application of our theory
/s uzr(w, 02)) fr(w)dw, —(24) 5 'section V reveals that the optimal schedule maximizes, fo

_ some appropriately chosex
for 6, > 6,, and O otherwise, and similarly fgr (6, 65). PPIop y

Using L in (20), the appropriate value of can be found Z[(l + A)(ri — (1= 0;)a;) — )\eimi} L{z>0}
from the Lagrangian dual problemin, max, L. We can write i
the maximum social welfare as IS

_ =3 (A+ Wi+ 0s) — 1+ )Y
r/\nZHOIE Zmi};Q{Z(et + )‘91(91))“(%)} — (14 N)el. ies i=1
! ‘ where S is the set jobs chosen for processing. Consider the

4. It is interesting to compare solutions with > 0 and gpecjal case that; = r for all i (- < 1), and suppose
A = 0. For the following discussion, we continue to sUPPOSgeclarations are such thét > - - - > 6,,. Then the mechanism
thatu;(z(6;) = O;u(z). will operate by choosing some set of jobs2, ..., & (with

If A >0 then E[3%; pi(6:)] = c andp;(0) = 0 for all i. |east delay costs) and then schedule them in okder. , 2,1
Note that the resource is not necessarily allocated in thesaj e giving decreasing priority to jobs with decreasindage
way that an efficient market would allocate it. For exampl@osts). A little algebra shows thatis the least nonnegative
supposen = 2 and 6, ~ U0, 1], 62 ~ U[0,2]. Suppose that jnteger such that
¢ is such that we cover the cost when taking= 1. Then
if 9, — 5/6 and 6, = 1 we will have thatz, > should be it F 0 g,y (1 T ) (25)
chosen to maximiz€u(z;) + u(r2). Assumingu is concave k+1 k+1)"
this will mean we should take; > x2, even thouglt, < 62. or = n if the above does not hold fdr = n. Thus we have

If A = 0 then we see from (18) that the resource ifpund the general form of an optimal operating policy. One
always allocated in the most efficient way, i.e. to maximizgight have guessed that an optimal mechanism would choose
>_;biu(x;). This is now the same way an efficient markejo process a set of jobs with small delay cost, but the precise
would allocate it. The expected sum of payments can creai@erion for selection in (25) is not something that one idou
a surplus, say = E[>°,pi(6:;)] — ¢ > 0. In this case we easily guess. However, there remains a difficult calcutati
may takep:(0),...,p,(0) as any quantities summing tes;  determine the right payments;(6;), and to find the value of
for instance we could share the surplus equally amongst theuch that the resulting policy induces payments that exactl

agents by setting;(0) = —s/n. cover the cost.
5. At the end of Section IV we looked at an infrastructure

optimization problem, in which the revelation of private- pa
rametersp;, ¢, takes place once at the start and influences the
choice of@. The analysis for this problem is very similar. We

VIl. SHARING POLICIES AND INCENTIVES
In this section we analyse the inefficiency of simple sharing

derive (15) from the Lagrangian dual policies and their inability to optimally incentivize agsrto
contribute to the shared infrastructure.
min Ey maX{ng max Y, ha(¢3)0; cu(x;) — (14 N)e(Q) ¢ For simplicity, we take the activity model of Section IV
A Q CreX ’

and assume that; = 1 for all i. Let the set of active
This illustrates that one needs to be careful in orderiragents at day be S, wherea(S) = [[;c5 @i [[15(1 — ).
operators ofnaxg, Eys and Ey. Supposec(Q) = @ and that agents contribute daily, g-
6. Although the above gives a methodology, it is not eagyonetary or ‘in kind’) towards covering it, i.&) = Zj q;-
to apply analytically, even in simple cases. It is not evesyealf all contending agents have the same concave utility fonct
to say whether or nok = 0, although we know this dependsu;(z) = u(z), it would seem sensible to take(S) = Q/|S|.
on the value of. But is this optimal? Or should the sharing policy depend @n th
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«; and on the agents’ contributiong;? One might expect that agent tries to be a partial free-rider. How might we provide
sharing resource amongst agents in proportion to theialnitbetter incentives? One way is with proportional sharing.
contributions provides better incentives and greaterieffiy Proportional sharing.Suppose we divide the resource be-
than sharing resource equally amongst agents. Next wezmnalween agents in proportion to their contributions. Thisegiv
the performance of different simple policies for two ageats =z;({i}) = ¢1 + ¢2 andz;({1,2}) = ¢;. The equilibrium is at
equal sharing policy for, agents and subscription pricing ing; = g2 = 0.8246 and the social welfare i6.30225, which is
which all participants are charged the same fixed fee. better than the stand alone welfare. This is just a bit leas th

the 6.30294 that a social planner could achieve.

Consider now a scheme that shares resource proportionally

A. Sharing a resource between two agents. to sth powers of the contributions. That is,
Supposen = 2. Let z;(S) be the share of resource given W ¢

to agenti when the set of active agents$s The average net zi({i}) = a1+, 2:({1,2}) = g3z (@ + @)

benefit of agent 1 per period is Equal division iss = 0. Proportional division iss = 1. It
turns out that the equilibrium point is increasing dn For

o1(1 —ag)u(z1({1})) + craou(zi1({1,2})) — q1.
i 2Ju(@i({1}) razu(@({1,2)) — a s =9/8 = 1.125 the equilibrium is exactly the same as that
Supposeu(r) = r — 1/x, with r = 10, anda; = az = o = 0f the social optimum. In fact, this works for anywhen we

0.8. If we take z;({i}) = =;({1,2}) = ¢ then we model takes = (1 + 1/a). Note that this means taking> 1.
agents acting alone, i.e. each building her own facilitytidg Other schemes can also be good. For example, recaH

alone agent maximizesx (r — 1/¢;)—q;. She obtains averageqz = qo = /(1 + «) /2 achieves first-best welfare. Let
net benefit ofn10 — 2,/a = 6.2112, for ¢; = 0.8944.
Now suppose agents share the resource. Since as = « z1({1}) = a1 + q214g, >0}

we would expect that under any reasonable mechanism the — 22({2}) = 2 + q1l{g,>q0}, #:({1,2}) = .

agents should be incentivized to contribute equally and th_F\h . h | ) ve th he is all d
resource should be shared equally wites {1,2}. However, atis, when agent alone is active then she is allowed to

it matters what this mechanism is. We now look at suchs€ agent 2's contribution, but only if she contributes aste
mechanisms qo. This scheme achieves the same social welfare as does a

Equal sharing. Consider an ‘equal shares’ policy Ofcentral planner. However, to comqu@-we need to know the
w({i}) = @ + ¢ and z;({1,2}) = %(q1 + go). Agenti parametersy;, o (as when choosing = 1.25 above).

has net benefit of

1—a o ) B. Equal sharing provides wrong incentives.
qi

nbi(q1, q2 :a(r— —
8 ) a+ae o+ )

The inadequacy of equal sharing is true more generally.
Suppose that there are agents,p; = 1 for all 4, anda; >
-+ > ay,. It turns out that the equal shares policy does not
work well, because only agent 1 has any incentive to cortibu
resources. To see this, note that agent 1 wishes to maximize

The social optimum is achieved by choosifpg= ¢ = ¢ to
maximizenbi (q1, q2) + nba(q1, q2). This is achieved by =
Va(l + «a) =0.8485. The net benefit per agent §53029.
Suppose agents have full information regardingg; and
g2. Sharing resource with the equal shares policy, agent b B B > il B > il
maximizesnb; (¢1, ¢2) with respect taz;. There is equilibrium " 1(g) = a1 [0‘2 U\ aryo) Teelul } —a
for any (q1, ¢2) such thaty; + g2 = 1.2. If we requireq; = g2 _ o o )
then the equilibrium is;; = ¢» = 0.6, and each agent hasW'th respect taz;, and agent 2 maximizes a similar expression

net benefit.2. This is less than the.2112 they obtain when "02(¢) With respect tog,, where M is a random variable
acting alone. In fact, when = 2, two identical agents will denoting the number of agerﬁs. ..,n that are present. Since
prefer to act alone for al; = oy > 7/9. ai(l —az) > az(l —ay) it follows that

The above issue worsens as thg number of agents increases. Onb1(q)/dq1 =0 = Onba(q)/dgs < 0.
If n = 10 then each agent contributgs = 0.2561 and the
net benefit per agent i5.1826. For n > 98 the equilibrium So the only possible equilibrium is witly = 0, i > 2.
is driven to a point where agents no longer have positive netNow let M’ be the number of the agers. .., n who are

benefit. They will start deserting the system, even thougth, wpresent. For an equilibrium to exist with > 0 and¢; = 0,
a central planner, there would be benefit increasing.in i > 2, it would have to be that

We have made a surprising observation: two identical agents
can obtain greater net benefit by acting on their own than by a10Eu(qi/(M'+1))]/0¢1 —1 =0
participating in a shared system in which their contriboio
are determined as the Nash equilibrium of a game. We h
seen that the social welfare obtained by ‘equal shares’ ean b a (OVE[1/(M' +1)] =1 > 0.
less than stand alone fer > 7/9. With « = 0.8 the stand
alone welfare i$5.2112 and the shared-infrastructure welfareClearly, E' [1/(M’ + 1)] — 0 asn — oo. So ifu/(0) < co and
is only 6.2. This is because the incentives are wrong and eaahs large then no agent will wish to make any contribution.

J\% someq; > 0. This can happen if and only if
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C. Equal sharing with subscription pricing. he is active. Each agent chooses the parametkat offers

One possible scheme is to charge a flat subscription feehin the best combination of cost and value. An equivalent
any agent who wishes to participate. We purchase the gteaft-parametric representation would be= z(p), a function
amount of resource that the collected fees allow, and in ed@hthe payment. _ _
epoch share it equally amongst any agents who are activeQUr analysis treats special cases of the general model in
Such schemes are commonly used in practice due to thagction V. _Specmcqlly, in Section VIII-A we deal with a new
simplicity. Let us investigate how well such a scheme can dgfoPlem which we did not address before: we have the activity

Suppose that, = --- = ¢, = 1, but o, differ, and that model, and the prlvatg information of an agent is his aqtl\_/lt
a priori these are uniformly distributed df, 1. If we set Tequencya;. In Section VIII-B the unknown parameter is
the fixed subscription fee to bethen there is a minimum, Service valuation;.
say «,, for which it is advantageous for a ‘marginal’ agent t
participate. Suppos# is the number of the other— 1 agents
who have their; greater thamy,. As the marginal agent’s net

A. Optimal incentives for declaring activity frequencies

We now consider the optimum designs for systems in which
a large number of agents participate and which are of the

benefit is 0, . ) ) ] ' )
activity model type introduced in Section IV, i.8;, is O or
1+ (H%) N 1, with probabilitiesl — «; and «; respectively.
0=a,EN|r— W} —q. Suppose thak'¢; = 1, which for simplicity we approximate
4 as¢; = 1 for all 7, and the values af, ..., a,, are unknown

to the system designer. He would like to elicit these as part

Using N ~ B(n — 1,1 — ag), routine calculation gives ) . , ; .
of an incentive compatible scheme that optimally sizes a

0=ay(r—[1—of + (14 aq)n]/(2nq)) —q, system whose cost is covered by the payments of the agents.
] _ This model applies to the practical circumstance in which
and the expected net benefit of all the agents is the central planner does not use accounting mechanisms to
) ) 1—a? + (1+ag)n estimate, and thereby police tlags. The aim is to structure
7(1— aq)n r— g — (1 —ag)ng. the tariffs to incentivize agents to reveal truthfully theis.

Let us suppose tha{@) = @, u(x) = /2 and that a priori

For r = 10 we find optimalg and o, as in the table that the o, are distributed uniformly orj0, 1]. That is, there are
follows. For comparison, the final column shows the firsttbegpproximatew equal numbers of agents with each value of
that could be obtained in the full information case. We cao al ,, in the range[0, 1]. The number of agents is very large,
calculate that under proportional sharing,ras» co, agents gg we may suppose (by the law of large numbers) that we
Of aCtiVity « are incentiViZed to Contribth/ 0.60[, and the can meet demands from the common resource p00| provided
average net benefit per agent3967. Stand-alone it would the total amount contributed through payments covers tie co

be 3.667. of meeting average demand. The numbers we obtain in this
n q 0y net benefit/agent section can be viewed as upper bounds on performance for a
subscription  first-best system with a small number of agents.
2 0.6367 0.0726 3.770 3.827 We would like to compare efficiency of the second-best
10 05418 0.0697 3.939 3.066 policy with the full information case, but also with the case
s~ 05158 0.0575 3.987 4.000 where agents use a different policy, the ‘go-it-alone’ pglio

: ~_self-provide their infrastructure and not share it withesth
Of course it would be even better to ask for a subscription The go-it-alone solutionif an agent with parameter must
fee that depends om, which could then be policed. Forgo-it-alone then he will choose to build a facility of sizeto

example, this might bevg. Forn large it is optimal to take maximizeau(r)—x and therefore take = 1a?. The average
q = 1, there is noa,, and the expected net benefitds4n, social welfare per agent is then

which is almost the same as using subscriptjos 0.5158 1
for all agents. Other schemes might be investigated, such as /
sharing in proportion ta@; /. 0

10% do = &5 = 0.0833.
The full information solution:Suppose a system designer
having full information decides to provide an agent with

_ ) parametera = t with resourcez(t). The expected social
We now address the formation of systems with larggejsare (per agent) is

numbers of participants and show that optimal tariffs have 1 1

a simple structure. Again our aim is to incentivize agents / tu(:c(t))dt—/ tx(t) dt.

to report indirectly some private parameter by choosing the 0 0

tariff that suits them most. As a function of his tariff chejc So the optimum is:(¢) = 1/4 for all ¢, and the resulting social

an agent is guaranteed a certain amount of service and wWwdfare per agent id/8 = 0.125. It is somewhat surprising
operator uses the payments to procure the infrastructurettadt a system designer will wish to allocate the same resourc
the right size@. In particular we consider tariffs of the formof 1/4 to any agent on occasions he is present. This is because
{(p(t),x(t)) : t € [0,1]}, parametrized by, such that an every time any agent is present he presents an opportunity to
agent who chooses tariff paysp(¢) and getse(t) whenever earn benefit/z.

VIIl. BUILDING SYSTEMS WITH MANY PARTICIPANTS
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The partial information solution using optimal tariffé&dow 030k £(6)
the designer of the system wishes to optimize the system E
by designing appropriate incentive compatible tariffsclta 025
agent chooses the tariff that is most beneficial to him. Aftari g
specifies the amount of resource an agent will receive each F
time he is active and the corresponding payment he must make o.15¢
initially in order to participate in such a system. :

We consider the set of tariffe(t), «(¢)) parametrized by, :
the type of the customer (in this casg). According to these 005 F
tariffs an agent who contributegt) getsxz(t) whenever he ;
is active, and{p(t),z(t) : ¢t € [0,1]} is the set of possible
choices.An agent’s maximum net benefit j§«), where

0.20F

(26) line is net benefitf (t) = tu(x(t)) — p(t) and the dashed line i€ /4, the

s net benefit obtained by an agent acting alone.

} Fig. 2. The solid lines show(t) andz(¢t) whent > 0.2339. The dotted

fla)= max{max lau(z(s)) — p(s)],0

The maximum of linear functions af is convex ina; this
is how we knowf(«) is convex. Similar to the arguments in
Section V-B, for incentive compatibility we must have

Remarks.
1. The social welfare obtained (5116121 and this is just a
bit less than the social welfare 6f125 that could be obtained
av/(z(a))z’ (o) — p'(a) = 0. by a system designer having full information.
2. The optimal scheme is one in which agents with<
a = 0.1586 are prevented from participating. Intuitively, the
reason we need to do this is so we can incentivize the agents
o with greatern to make more substantial contributions. Another
ple) = au(z(a)) - / u(xz(s)) ds way to think about this is that we prevent agents from free-
“ riding by declaring smalk, by preventing such smadt from
1 1 participating.
/ p(a) da :/ (2a — Du(z(w)) da. (27) 3. The black lines in Figure 2 show(t) and z(t) (the
@ @ amounts that agents will contribute and receive when diedar
The resource constraint is «a = t). Most agents receive more than they contribute. But
1 agents with values ofv < 0.23389 receive less than they
/ [az(a) — p(a)] da < 0. contribute. However, if go-it-alone is not possible (besmu
0 they cannot purchase and install resource for themselves or
Our goal is to maximize the social welfare subject to incenti pecause there may be some additional fixed cost) then they
compatibility and cost coverage. Consider the net beneiib fr will still take up this scheme, since their net benefit is posi
(26), the constraint (27), and substitute the resourcet@ns 4. The dashed blue line i€ /4, which is the net benefit an
which holds with equality. Then we seek to maximize poinfagent could obtain if he were to go-it-alone, by takir(g) =

So if an agent with paramete® has net benefiD, then
incentive compatibility is equivalent with

and

wise for eachs a Lagrangian of p(t) = t2/4. The dotted red line igf(t) = tu(z(t)) — p(t),
1 the net benefit that an agent obtains in the shared system.
L:/ [(s+)\(2s— D)u(z(s)) — (1+)\)s:c(s)} ds, This is convex, so there would be no benefit to an agent

with parametera masquerading as being two agents with
wherea = A\/(1+2)) (the value ofs such thats+\(2s—1) = parametersy/2. Notice that the dotted red and dashed blue

0). lines cross; an agent does better by going alome<f 0.2884.
For u(z) = \/z the maximizingz(s) is It is easy to rework this analysis and obtain the optimafftari
9 under the assumption that agents can go-it-alone if they find
2A+1 A it more beneficial
a(s) = - .
200+1)  2(A+1)s
This means thal is maximised to B. Optimal incentives for declaring service valuation

1~ 2)2log (L) 2 NQ\{v we look at infrastructyres With a large nurr]ber of

1422 participants and obtain a solution that is simple and iivelit
8(A+1) ' We again consider the general model in Section IV, and
specialize it for unknowny;s, andé; ;s which are truthfully
reported because of policing and long-term participatidie.
analyze first the simple case in which agents are of the &ctivi

p(t) = 0.173521 4+ 0.0942239 log ¢ model type, i.ef; , € {0, 1}, with known activity frequencies.

2(t) = (0.594224 — 0.0942239/75)2 Then y\(e geperalize for allrbitrarlﬁs._jl'hus we suppose Fhat

agent; is active on day with probability «; and when active

andp(t) = z(t) = 0 for ¢t < 0.158566 (= A/(1 + 2X)). and allocated resources his benefit isp;u(z;).

By minimizing this with respect to\, we find A = 0.232206.
This gives for a solution in which fotv > 0.158566 = @,
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We state first a heuristic derivation of the largeresult. Thus an agent benefits from the existence of the other agents
For anyn (not small) the optimal mechanism is like thiswhich are not always claiming resources; he uses the optimal
a system is built of sizeQ(¢). Agents are charged pay-amountwhen he is active but pays only when he uses it, since
mentsp; (@), ..., pn(¢), and the sum of these covers the cogithers pay for it when he is not.
c(Q(¢)). When agent is contending for the resource amongst In the general case the utility for agenis ¢;6; ;u(x;). We
a group of active agent§ he receivesr; (¢, S). Following make the assumption thé, is truthfully declared by policing
the steps in the analysis presented in Section V-B, there isuad that it takes values from a finite det;, ..., o}, which
A > 0, such that for allS the optimal way to share resourcds the same for all agents (for simplifying notation). Let,,

@ amongst a set of active agerfiswith declarationsp is to be the publicly known probabilities that agertiase; ; = o,,.
maximize For instancef; , could take a valuer,, € {1,2,3} (perhaps
Y ics (@i + Ag(i))u(zi(9,9)), (28) corresponding to low, medium, and high). Lef(¢,6,) be

. the allocation to agent when the agents are in st =
over) . z;(¢,S) < Q(¢). This follows from the fact that we I gentw gents In stafe

.. . N . 1,t7---79n,t-
are maximizing pointwise for eacty, 5), a Lagrangian of It is easy to see that same analysis holds as before. Again,

_ ) , N we assume when agenis active with§; ; = o,,, the rest of

L=E|Y g ics (9)(¢i + Ag(di))u(zi) — (1 + )‘)C(Q)} the agents are in their typical average state. So it is redsen
over Q@ = Q(¢) andx; = z;(¢, S), subject to the constraintto look again for an approximate solution in whieh(¢, 6;)
Yies i, 5) < Q(¢) for all S. The Lagrange multiplien  depends only on the value 6f,, i.e. is of the formz; ,,, =
is associated with the ex-ante constraint on cost coverage.z;(¢, o,,), and we only need to satisfy the constraint

This has an interesting limit whem is large, and it allows o
payments to made in kind. Note that when ageig active 2 Lom Cimi(9,0m) < Q(0)- (32)
the rest of the system will be in its typical average state. 3d\at is, we should choose the s so that the average sum
we can look for an approximate solution in Wh|mt(¢), S) is of resource allocations does not eXC@dAS beforel‘iym is

independent ofs and we only need satisfy the constraint the guaranteed amount agergets when his staté; ; = o,
Again it turns out that as — oo we have a solution in which
2o izi(9) < Q(9). (29)

Li,m (¢) = Tim (¢z) = arg maxw’,{qj)ia'rnu(xg) - x;} (33)
That is, we should choose thegs so that the average sum of_, . . . . .
resource allocations does not excegdSincec(Q) — Q, the fThIS achieves the first-best optimum where each time an agent

i is in statem he is allocated the optimal amoutyt,,, (¢;) inde-
Lagrangian for the problem reduces to pendently of the other agents and he pays @nly,z; . (¢:).
L= E[Zi i (¢ + Ag(p))u(xi) — (L+ )Y, ozimz}, Hence in total he pays for his average resource usage. This
suggests the generalized form of optimal tarifts; ,,x, x),
to be maximized with respect to; > 0. It turns out that ass ;. > , for eachi andm. In this set of tariffs, agent must
becomes large) — 0, the constraint (29) is satisfied, and th@hoose a specific tariff for each state i.e. the best value of
solution is x given that by payingy; ,,x he obtains always when he is
AN N Lo () ol in statem. Clearly this tariff is possible because, as a result
2i(9) = wil9s) = argmaxy {pula) — i} (30) of policing, the value ofn is truthfully declared.
Moreover, each time an agent is active he is allocated theBefore stating a limiting result for the optimality of the
optimal amount independently of the other agents. But ageiiove tariffs, lets see why it works. We work again using the
i pays onlya;z;(¢;) and this exactly pays for his averagerasier notation of the activity model. Lef = z;(¢;), as de-
resource usage. This is the form of first-best policy that offieed above in (30). In practice, we ne®d, z;(¢, S) < Q(¢)
expects to obtain in the limit for large, where@ is provi- forall S. This is not possible if we try to take; (¢, S) = x; for
sioned to serve the system in its typical (average) states Thll S. However, we can modify things slightly by proposing an
suggests the simple form of optimal tariffs;;z, 2), 2 > 0, approximation of our previous tariff which is implementabl
for eachi. In this set of tariffs, agent must choose a specificfor every n and in the limit becomes the tariffa;x, ).
tariff, i.e. the best value of > 0 given that by payingv;z he  With agenti contributingg;, we lety; = ¢;/a; and redefine
obtains always, when he is active, Clearly, agents of large (¢, S) = 1;Q/ > jes Yj» where@Q = 7. ¢;. This is a pro-
;S should be policed so as not to use tariffs with smaller  portional sharing of) that takes into account the contributions
It is interesting that the optimal contract chosen by agenbf the agents and their frequency of use.
secures the same amount of resources from the shared resourdVe illustrate the scheme with(z) = r — 1/z. Let I; ~
pool as he would optimally choose to self-procure if no sare3(1, «;). Agent: has expected net benefit of

infrastructure was available and he wa#aysactive. But he
needs only pay for his average usage, namelydfor;. By a;pi B {7" —(vi+ 2 i IJ'?JJ')/(%‘Q)} — QY
construction, this scheme is incentive compatible, i.ewile = o (¢i(r — 1/yi) —yi) — (1 — a;)/Q.

choose the tariff parameterized by his actual value.dflote
that z;;(¢;) exceeds the size of the facility he would form i
he were to stand-alone, which would be

fThe terma; (1 — ;) /Q is small and varies little withy;, and
a;(¢i(r —1/y;) — ;) is maximized byy; = z;(¢;). So agent
1 is incentivized to contributez o;xz; and the total welfare,
29(¢;) := arg maxz;{gbiaiu(:cg) — i} (31) whichisO(n), will differ from its first-best value by jusD(1).
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A limiting result for largen: Consider the activity model to give resource of; to every agenj who is present. Letting
with n identical agents. Suppose that each agent is presénbe aB(1, «) random variable, this is
with the same frequency, and when present agenthas n n
utility for resource¢;u(x;). Resource costg(@Q)) = Q. Let P (9:1 + ZIZ.Q:Z. > (14 €)ax; + Z(l + e)wi>
us do everything ex-ante and for a single period. The aim is i—2 i—2
to maximize the expected net benefit (with the usual idea that n n
we must satisfy C1-C3). o . . _ —_p <(1 — )z + Z(Ii — Q)z; > eax; +€ZO“T/1’>
We know that the solution is one in which agenwill = s
participate if¢; + A\g(¢;) > 0, and then, if the set of agents

who turn out to present ig, the resource will be allocated to (1—a)z?+> ", a(l —a)z?
maximize)_, . ;(¢i + Ag(¢s))u(x:). TR 2
Let us definef! and f2 as the maximal first- and second- (60‘ 2 m")

best social welfares that can be obtained frenmidentical - 2,9 9
agents. We shall show that as— oo both f;! /n and f2/n < (Tmax/Tmin)” /€0,

converge to the same social welfare per agent, as couldvbieere for the first inequality we have used a Chebyshev
obtained if perfect multiplexing of resource allocatiorss tinequality of the formP(Y > ) < E[Y?]/62, taking the
agents were possible: meaning that if an agent were to magectation here oveh, . .., I,,.

a contribution towards) of ax and then he could receive Thus forn sufficiently large the right hand side above is less
preciselyz whenever he is present. If this could be guaranteéigan ¢, uniformly in z;. Thus the ex-ante guarantee to agent

then the agent with parametey should choose 1 (and similarly other agents) can be fulfilled. The expected
net benefit for agent is then
x(¢;) = argmax |ag;u(x) — owc} = qrarg max [@-u(x) - m}
* * a(l+e)z(i=<e;).
Let us define 1+e) <1+‘ ¢ )
Now z(¢;) is convex ing;. So by Taylor expansion inaround
2(¢) = max{pu(z) — z} = pu(x(9)) — 2(¢) 0, and using the fact that(¢;) = u(z(¢;)), we find that agent
B 1 has, for some € [0, ], expected net benefit of
z=FEz(¢).
l—e 4\ _ . D S
ottt < 1 < 02 (52 0) =00 + 60 - 26070
2 00 1\ 2
Theorem 3:f2/n — az. +20i2"(di)eo )
Proof: We already havef? < naz. To establish an in- =z 2(¢a) + [2(i) — 20i2(¢1)]e

equality in the opposite direction we need to find a mechanism 2(¢;) — [w(di) + diu(z(h;))]e

that is implementable and which achieves a social welfare of

almostnaz. > 2(¢i) — [2(b) + u(z(b))]e.
Let us suppose that; has a distributiort” over an interval

b A ; i h h - 7% This shows that the expected net benefit that can be obtained
[a,b]. Assumingu(-) is concave, ther(¢) is increasing in from n agents by use of an optimal mechanism is at least

¢ S_uppose tha < z(a) < z(b) < co. o . naz — anlxz(b) + u(x(b))]e, for largen. Sincee is arbitrary,
Fix some smalk > 0. Suppose that it is possible to create .o completes the proof thal/n — az n
a mechanism with the property that if an agent contributes '

a(l + €)x then he can be given an ex-ante guarantee that if

he is present he will receive exactly resource amaumtith , ) - . .
probability 1 — e and resource 0 with probability Assuming We have investigated policies for running shared computing

this is so, agentwill choose to contribute an amount which resource infrastructures. We have assumed that partisipa®
maximizes his ex-ante expected net benefit of strategic in disclosing private information about theituat

resource needs and we have considered how best to share
a(l = e)piu(z;) — ol + €)x, resources and take payments from the participants so as to
maximize the overall efficiency of the system, while covgrin
its costs. The chief lessons from this study are as follows.

IX. CONCLUSIONS

and so he will take

T = (}jr: qbi) . 1. A participant’s decision about the quantity of resources
_ that he will choose to contribute to the resource pool can
Define be greatly affected by the resource allocation mechanisih th
P— G;: a) and 2., = (%;: ) . he knows will be deployed when the system operates. Thus,
a resource allocation policy may not be optimal if it only
Assumez,i, > 0. Note thatz,in < 2 < Tmax. allocates resources with regard to the efficiency of thesdivi

We now show that for large it is possible to fulfill the ex- of resources, while ignoring the effect this has on incéritig
ante guarantee to every agent. To see this, we observe thatafents to contribute towards covering cost. For examptagif
probability we cannot provide resource of to agent 1 is no resource will be shared equally amongst participants then a
more than the probability that the total resource is insigffit agent may choose to contribute nothing to the resource pool.



2. One way to incentivize potential participants to makgs]
significant contributions to the resource pool is to impose
a rule that a participant will only be permitted to draw ofyg
the pool if he makes a minimum contribution to it at the
point that it is formed. Another important rule is that an
agent who contributes more resource will have greaterigrior[ﬂ]
for obtaining resource than an agent who has contributed
less. Such rules will incentivize agents to make contrimgi [18]
that reflect their privately held beliefs about the benefitsyt
expect to obtain. The result is a facility with an appromiyat [20]
large quantity of resource, which is efficiently shared.c8in
contribution are made in kind there is no need for any inferngy;
money transfers. [23]

3. We have seen that some optimal resource sharing mech-
anisms are parameterized by a Lagrange multiplieor by [24]
the # or @ of a marginal participant. In practice, it would be
useful if one could discover the right value of these paranset [25]
by some sort of on-line adaptation algorithm. We suggest tha
this could be an area for fruitful research. [26]

4. In a facility that is already built and so has a fixed size
(such as NRNs, National Grid Infrastructures), the running
cost must be shared by charging the participants. In general
if the identities of the participants change over time, then
our results for one-shot participation suggest that onailsho
to operate a specialized mechanism in which participants
receive resource shares according to their declared needs,
while generating enough payments to cover running cost. In
the scenario of long-term participation simpler policiessg
but at the added cost of implementing some accounting, st
as policing of thex;.
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