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ABSTRACT 
A Demand Response (DR) program can only be effective if it offers 
to users the proper incentives to participate and thus to modify their 
energy consumption patterns. In this paper, we focus on DR for 
residential environments. We propose a learning algorithm that 
helps the energy provider explore iteratively and discover for each 
user the minimum acceptable incentives that can motivate him to 
participate in DR on the basis of DR participation history and of 
profiling information possibly available. The provider can thus 
allocate incentives in the way that ensures the highest participation 
rate with the least possible total incentives, even when little 
information is available. We also deal with assessing, by means of a 
simple model, the effect of the provision of recommendations on 
users’ participation in DR. We evaluate our algorithms for 
incentives’ allocation and learning by means of simulations. Our 
results reveal interesting insights on the impact of profiling 
information on the allocation of the incentives for DR. The 
proposed algorithms and the environment implemented, when fed 
with appropriate values for certain parameters, can be employed to 
provide approximate evaluation of the performance of DR in 
practical cases.    

Categories and Subject Descriptors 
H.4 [Information Systems Applications]: Miscellaneous 

Keywords 
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1. INTRODUCTION 
DR programs constitute an efficient way to alleviate the peak 
demand problem in smart electrical-power grids. They encourage 
electricity end-users to adjust their consumption in response to DR 
events and signals issued by the energy provider. DR programs have 
been implemented both in industrial and commercial environments. 
Their successful penetration, particularly in the residential sector, 
can result in considerable savings, due to the fact that such 
environments account for a large portion of the total energy 
demand. However, the real success of such programs depends on 
offering adequate incentives for the participation and timely 
response of users to DR events, especially for critical peak rebate 
DR programs. Results from DR pilots indicate that the level of 
discomfort/inconvenience caused to users during a DR event due to 
modifications in their consumption pattern is a key factor that 
shapes DR participation; e.g. see the work of project WATTALYST 
available in [1] and references therein. In principle, users are 

assumed to follow a particular consumption pattern according to 
their preferences. To be encouraged to participate in DR, energy 
providers offer various types of incentives to compensate users for 
the inconvenience caused to them. However, estimating the 
appropriate amount of the incentives needed to engage them to 
actively participate in DR is considered a major challenge. This is 
due to the type and amount of information that is necessary for the 
provider to carry out such an estimation, particularly information 
relating to demographic and consumption characteristics, such as 
profile of the household, its total consumption or consumption at the 
appliance level etc. The analysis of users’ consumption patterns to 
obtain such information is a critical issue. Any request for reduction 
and/or shifting of power load in order to be successful should be 
consistent with the type of loads arising in each household, i.e. with 
the appliances used by each user and the constraints imposed by 
their operation. This of course implies that the provider, in order to 
acquire more detailed information on appliance usage and 
preferences, either employs the appropriate equipment, additionally 
to the smart meters, e.g. appliance level meters, or invests in 
different non-intrusive load monitoring (NILM) or load 
disaggregation systems and algorithms. These algorithms allow for 
the derivation of detailed information on appliance usage from data 
on the total consumption that is collected by a smart meter [2] and 
also for avoiding the additional cost of installing new infrastructure 
in both the provider and the user sides. While this profiling grants 
for a better and at once realisation as well as for a possibly accurate 
assessment of users' participation probability, users cannot be 
obliged to participate in DR and modify their consumption patterns, 
but can only be incentivized to reduce or defer consumption. The 
importance of incentives for successful DR programs is recognized 
and in fact has motivated several theoretical works in the literature; 
e.g. [3] deals with a similar problem with that addressed in the 
present paper. In this context, we propose a learning algorithm that 
helps the provider discover how to allocate DR incentives to ensure 
the highest participation rate (even when little information is 
available) while offering the least possible total incentives for 
achieving this participation rate.  

Our algorithm utilises the available information in order to discover 
for each user the minimum acceptable incentives that motivate him 
to participate in DR. Indeed, to stimulate users’ participation and/or 
incite them to follow the provider’s requests for load curtailment or 
shifting, the provider is willing to dedicate a budget for providing 
incentives. In essence, the provider offers each user a 
reimbursement for his inconvenience in the form of monetary 
incentives. We assume that the provider aims to achieve the highest 
participation rate, which may amount to 100%. We develop a 
learning approach aiming to iteratively explore and exploit at the 
same time (in successive DR events) which incentive to offer in the 
next event based on the current estimates of users’ participation 
probability, so that the highest participation rate is achieved and the 
least possible incentives for achieving this participation rate are 
offered by the provider. In fact, in the course of this process the 
provider may prefer to choose attaining a lower DR participation 
rate if this is considered more beneficial for him, e.g. according to 
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the required number of users participating in DR (or to the load that 
should be curtailed) or to the trade-off between the participation 
achieved and the total incentives offered. We also develop a simple 
model to study the impact in users’ participation of 
recommendations. The recommendations are based on the 
information about users' consumption patterns and can address 
either the total consumption or the consumption of specific 
monitored appliances in each household. The evaluation of our 
work is done by means of simulations. To this end, we also develop 
a parameterized environment, which (when fed with appropriate 
values for certain parameters) can be employed for the approximate 
evaluation of DR performance in practical cases.  

2. RELATED WORK 
From the very broad literature on DR, our work is related mainly to 
learning of the DR incentives that should be offered per user and to 
a smaller extent to non-intrusive load monitoring (NILM). The 
literature on NILM is already extensive; e.g. see [2] (which was one 
of the first related articles), and [4] and [5] for some recent works. 
In this paper, we do not develop an approach for NILM, but we deal 
with how the provider can benefit from knowledge of consumption 
data (obtained through NILM) and/or profiling information in order 
to design more effective DR programs and allocate efficiently the 
DR incentives’ budget. Regarding learning of the necessary DR 
incentives, [3] develops a related Multi-Armed Bandit (MAB) 
approach. The objective of that work is very similar to ours. 
However, in our work we only do learning without resorting to 
MAB, since at each DR event we offer some incentive to each of 
the users. Moreover, both in the model of [3] and in ours the user is 
characterized by a minimum incentive parameter, referred to as cost 
per unit reduction in [3]. The authors of [3] assume that the DR 
participation probability of a user is fixed provided that the offered 
incentive exceeds this threshold, while it equals 0 otherwise. In our 
model we assume that this probability varies with the incentive 
offered to the user according to a sigmoid function; see equation (3).   

In this paper, we develop a methodology for an energy provider to 
exploit already available profiling data in order to dynamically 
discover for each user the minimum monetary incentives that should 
be offered to him to participate in DR, as well as to assess the 
impact of recommendations. These are proposed to users based on 
knowledge extracted from load disaggregation methods, or simply 
from profiling based on demographic data (see below). Thus, our 
methodology offers the provider a way of exploring a set of possible 
incentive allocations to choose from, each of which ensures specific 
levels of participation attained by offering the minimum total DR 
incentives using also the available profiling information.  Our 
learning algorithm is iterative; each iteration corresponds to a DR 
event with simultaneous exploration and exploitation. Our 
methodology can be easily modified into a budget-limited problem, 
whereby the budget constraint is satisfied in all iterations.  

3. THE MODEL 
Consider a set of ܰ users (and corresponding households) that are 
served by a single energy provider and are eligible for participation 
in DR. Each user ݅	 ∈ ܰ is characterised by i) a set of demographic 
characteristics, e.g. size of family, age, etc., ii) a consumption 
pattern, which is formed according to his needs and preferences and 
iii) the price of electricity. To simplify our analysis, we assume that 
each user ݅ ∈ ܰ can only belong to one of two categories, to which 
users are categorized on the basis of the above profiling 
information; the categories are i) elastic ( ଵܰ), those who are willing 
to modify their consumption in order to benefit from a discount 
and/or reduced energy prices and ii) inelastic ( ଶܰ), those who are 
reluctant to participate in a DR program. How exactly this 

categorization is done, falls beyond the scope of our work. 
Therefore, the provider should offer a higher incentive to inelastic 
users than to the elastic ones in order to engage them in DR if this is 
necessary due to the load that should be curtailed. To model user 
response to the incentives offered for DR, we assume that for each 
user ݅ there is a minimum incentive value ݐ௠௜௡,௜,௝ that triggers the 
user to participate in DR, yet not always, as explained later in detail. 
Moreover, for each user belonging to category ௝ܰ , ݆ = {1,2}, this 
minimum incentive is drawn separately from the uniform 
distribution in the interval ൣ ௝ܽ, ௝ܾ൧, ݆ = {1,2}, which is the same for 
all users in ௝ܰ , ݆ = {1,2}, while its expected value equals  ଓ݊ܿതതതതேೕ 	=	݉݁ܽ݊ ቀݐ௠௜௡,ேೕቁ = ௔ೕା௕ೕଶ 	. If the provider knows the classification 

of users by means of profiling information, then he can offer 
initially a different DR incentive ݅݊ܿேೕto each category ௝ܰ , ݆ ={1,2}. All users of ௝ܰ 	are then offered ݅݊ܿேೕ , which is expressed as ݅݊ܿேೕ = ߙ ∗ ଓ݊ܿതതതതேೕ					(1), 
where the parameter ߙ is an economic scaling factor that is used to 
relate the initial incentives to the average of the minimum incentive 
per category. This case is henceforth referred to as Approach 2. If 
the provider does not know the classification of users, then he is 
assumed to offer the same initial incentive to all users. This case is 
referred to as Approach 1.  However, even under Approach 1, we 
take that the provider does have an estimate of the average ଓ݊ܿതതതത of 
the minimum incentive over both categories (e.g. by means of some 
profiling or historical information regarding user DR behaviour), 

which in fact equals  
∑ ప௡௖തതതതതೀ∗మೕసభ ேೕே , where	ܰ = ଵܰ + ଶܰ is the total 

number of users. Although this assumption is non-trivial, it is 
employed so that the provider makes a meaningful choice of initial 
incentives offered per user. Alternatively, if the provider does not 
have any estimate of the average ଓ݊ܿതതതത, then he can start with an 
arbitrary value of the initial incentives and employ the learning 
algorithm as is. Thus, in our model, after scaling ଓ݊ܿതതതത by the 
economic factor ߙ, the provider offers the following initial incentive 
to all users of both categories:  ݅݊ܿ = ܽ ∗	 ଓ݊ܿതതതത = ߙ ∗ ∑ ଓ݊ܿതതതതேೕ ∗ଶ௝ୀଵ ௝ܰܰ 		(2). 
We have assumed that ݐ௠௜௡,௜,௝ expresses the elasticity of users and 
in association with the incentives offered, this parameter can be 
used for the assessment of users’ participation probability. In 
particular, when the incentive exceeds ݐ௠௜௡,௜,௝ the participation 
probability ݌௜ of this user should be close to 1; of course, the larger 
the incentive, the higher the participation probability. On the 
contrary, when the incentive is lower than ݐ௠௜௡,௜,௝ this probability 
should be close to zero. Moreover, when provider gives 
recommendations to the user, the participation probability is 
considered to be higher than when no recommendations are used. 
Indeed, for a given amount of incentives a successful 
recommendation facilitates the user’s planning of the consumption 
schedule based on the proposed reduction. Thus, the user can 
achieve the corresponding DR objective more easily and therefore 
more often than in the case when no recommendation is given. In 
the sequel, we assume that the participation probability of the users 
is given by the following formula: ݌௜ = ݁ହ(௬೔ିଵ)݁ହ(௬೔ିଵ) + ݁ହ(ଵି௬೔) ∗  (3)				ߛ
The parameter ߛ accounts for the fact that the maximum 
participation probability is higher in the case when 
recommendations are offered. It is assumed to take the indicative, 



values ߛ = 1 and ߛ = 0.8 for DR programs with and without 
recommendations respectively. These values are considered as 
representative of the positive impact of recommendations in the DR 
participation probability, The parameter ݕ௜ is the ratio of the 
incentive to the elasticity parameter of this user ݅	 ∈ ܰ, i.e.	ݕ௜ =௜௡௖௘௡௧௜௩௘௧೘೔೙,೔,ೕ , where the variable ݅݊ܿ݁݊݁ݒ݅ݐ varies according to the 

approach implemented in each case. Therefore, the participation 
probability given by equation (3) has a sigmoid shape with a 
considerable increase from low to high values when the incentive 
offered to a user exceeds his elasticity parameter ݐ௠௜௡,௜,௝. We 
choose to multiply ݕ௜ − 1 in the exponent by 5, as the resulting 
curve is steep but not very much, meaning that the participation 
probability does not increase or decrease very sharply. We have not 
taken ݐ௠௜௡,௜,௝ as a strict threshold, to allow for some uncertainty in 
user participation. However, we still refer to this parameter as the 
minimum incentive.  

4. EFFECTIVE INCENTIVE ALLOCATION 
We present below three approaches	݇ = {1,2,3} each following a 
different strategy for providing incentives. The third approach is a 
learning algorithm aiming to assist the energy provider in deducing 
information about users’ preferences in a dynamic manner and thus 
increasing the participation rate, by effectively allocating the 
incentives to be offered. The purpose of this algorithm is to grant 
the provider with additional knowledge concerning the trade-off 
between the amount of money used for incentives and the DR 
participation that can be achieved accordingly. We distinguish two 
cases with regard to the exploitation of the available information in 
the implementation of DR. In the first case, the provider applies a 
DR program without offering any recommendations on the actions 
to be taken by the users, while in the second case utilising the 
knowledge originating from the load disaggregation and profiling 
the provider offers recommendations regarding the load 
curtailment/shifting of certain of the appliances deduced, with the 
aim to examine to what extent the introduction of such 
recommendations leads to better results on user participation. 
Overall, the basic idea of the algorithm is to gradually exploit the 
available information in order to attain an efficient participation rate 
in conjunction with an efficient incentives allocation scheme. The 
approaches begin with the minimum information available to the 
provider. After each approach, the provider is assumed to enrich his 
knowledge of the monetary incentive preferences of each user, so 
that the maximum participation rate is achieved.  

4.1 DR without recommendations 
In this section, we consider the deployment of DR program without 
any recommendation and we run three distinct approaches.  

4.1.1 Approach 1: DR with a single unified incentive 
In this approach we consider that any prior information about the 
participation of users is either unknown to the provider, or ignored. 
Hence, the implemented DR program utilises the incentive defined 
in (2). The objective of the provider is to extract knowledge of the 
users’ elasticity from their participation. After the DR program is 
executed, the provider identifies the set of users that participated in 
DR as ܼଵ, ܼଵ ⊂ ܰ and estimates the total participation rate ܴܲܣଵ =ܼଵ ܰ⁄ . 

4.1.2 Approach 2: DR using participation information 
and common incentive per category 
Suppose that the provider by leveraging the demographic 
characteristics of users and the participation information from the 
previous approach generates better users’ profiles with regard to 
their elasticity characteristics. Thus, utilising this information, the 

provider deploys DR offering to each category the same incentive 
as in (1). In this case, we denote as ܼଶ,௝ the set of users that 
participated in the DR and as ܲܽݎଶ,௝ = ܼଶ,௝ ௝ܰ⁄  the participation 
rate for each category. The total participation rate equals ܴܲܣଶ =∑ ܼଶ,௝ଶ௝ୀଵ ܰ⁄ . 

Table 1. Mining the minimum threshold ࢚࢐,࢏,࢔࢏࢓ for ࢑ = ૜ 

Step 1: Define the initial incentive to be offered either according to 
Approach 1 or according to Approach 2. 

Step 2: Sort all users (Approach 1) and users in each category 
(Approach 2) in ascending order of ݐ௠௜௡,௜,௝. 
For each iteration ݎ: 

Step 3: Examine users one by one (for more details refer to the text 
of Subsection 4.1.3).  

Step 3a: Reduce the incentive value for each of the participating 
users by ߜ: ݅݊ܿ௡௘௪,ଷ,௥,ଵ = ݁ݒ݅ݐ݊݁ܿ݊݅ −  ߜ

Step 3b: Increase the incentive value for each of the non-
participating users by ߜᇱ: ݅݊ܿ௡௘௪,ଷ,௥,ଶ = ݁ݒ݅ݐ݊݁ܿ݊݅ +  ′ߜ
Step 4: Set ݅݊ܿଷ,௜,௝ = ݅݊ܿ௡௘௪,ଷ,௥,௝ and mark user ݅ as “Discovered”. 
The algorithm terminates, when changes in the ݅݊ܿଷ,௜,௝, ∀ ݆ = {1,2} 
do not affect users’ state, i.e. users do not change from participating 
to non-participating.  

Step 5: Compute for each category ݆ = {1,2} the percentage of 

participation ܲܽݎଷ,௥,௝ = ௓య,ೝ,ೕேయ,ೕ 	and total participation rate ܴܲܣଷ,௥,௝ = ∑ ௓య,ೝ,ೕమೕసభே , where ܼଷ,௥,௝ is the set of users that 

participated in the DR. 

4.1.3 Approach 3: Effective incentive allocation using 
learning of customized incentives 
This approach can be defined as an extension of both the first and 
the second approach. We refer to them as Approach 3.1 and 3.2 
respectively. The provider utilises the rate of participating users as 
input. The aim is to extract information concerning the minimum 
incentive ݐ௠௜௡,௜,௝ of each user	݅	 ∈ ௝ܰ in a dynamic way and employ 
it in a subsequent DR event. In particular, the approach consists of 
independent runs, each ݎ corresponding to a DR event. (The first 
iteration is essentially an execution of either the first or the second 
approach.) We introduce two parameters ߜ and ߜ′ that denote the 
amount of decrease and increase in the incentives offered. Their 
values are chosen to be quite small and fixed, so that there is limited 
dispersion of the resulting incentive values to be offered between 
the participating and non-participating users with similar values of ݐ௠௜௡,௜,௝. Table 1 describes briefly the steps followed. In particular, 
given the outcomes of the previous approaches as starting points, at 
each subsequent ݎ, the provider sorts the set of users (and in each 
category) in ascending order, so that users with the lowest 
thresholds to be investigated first, and the total amount of money 
spent to not increase rapidly. Then he reduces (resp. increases) the 
amount of incentives by ߜ to the participating users resp. (resp. ߜ′ to 
the non-participating users). Reducing gradually the incentive of the 
users that participated in the first and second approach resp. allows 
for exploring (learning) their minimum incentive ݐ௠௜௡,௜,௝ without 
affecting their participation. If in some iteration a user is not 
engaged with the new reduced incentive, then he is offered the same 
incentive for the next iteration as well, in order to confirm whether 
non-participation depends on the randomness of (3) or is due to the 
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