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Abstract. Cloud computing is a promising approach for delivering ICT ser-
vices by improving the utilization of data centre resources. One candidate
solution for accomplishing energy efficiency within clouds is the adoption of
energy-aware pricing by the cloud service providers. In this paper, we compare
the economic implications of the choice of pricing schemes under different
scenarios.
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1 Introduction

Cloud computing has received considerable attention as a promising approach for
delivering ICT services. One candidate solution for accomplishing energy-efficiency is
the adoption of energy-aware pricing by the cloud service providers. Charging cloud
services based on energy could potentially provide the necessary incentives to the
customers for achieving a more efficient resource usage.

Pricing in cloud computing has been studied extensively in the past (see [2] and
references therein) and most approaches consist of a combination of a fixed or variable
price per VM instance and an additional usage charge based on the actual use of
computing resources such as CPU cycles, network bandwidth, memory and storage
space. Recently, [3, 4] proposed pricing schemes which incorporate direct energy
consumption charges. In [3] the authors do not focus on the economic implications of
the proposed scheme, while [4] proposes a demand-response mechanism which the
cloud employs to cope with the variability in electricity prices.

In our recent paper [1], we proposed a novel pricing scheme based on energy
consumption of cloud resources. In this two-part tariff energy-based pricing scheme,
the actual form of the price is comprised by two parts: a fixed one depending only on
static information of a VM, and a dynamic one, which depends on its average power
usage. For comparison, we have also considered static pricing, whereby the price is
selected based on VM characteristics and does not vary in time.

To evaluate the effect of pricing, one needs to consider the actions taken by all the
economic agents involved. For example, a price increase by an IaaS provider does not
necessarily lead to an increase in its profits, as the demand of applications for VMs
might drop considerably. For this reason, we consider a microeconomic model, which
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incorporates the actions of IaaS/PaaS providers, applications and their users. Since an
action of any of these agents triggers a chain of subsequent responses by the others, we
are interested in determining the equilibrium of such interactions.

The goal of our analysis is to compare the economic implications of the choice of
pricing schemes by a service provider. In particular, our aim is to compare the static
and energy-based pricing schemes proposed in [1]. To do this we consider models of
cloud service providers sharing the same capabilities and the same cost structure, their
only difference being the pricing scheme adopted by each. The economic quantities we
consider are the level of (i) profits for each type of provider, (ii) payments made by the
customers of each provider type, (iii) overall satisfaction of the customers of each
provider type. Since the comparison depends on the market structure, we consider the
actions of service providers under monopoly and perfect competition. We prove that
charging VM energy in addition to a flat fee per VM, as done by the two-part tariff, is
optimal for IaaS/PaaS providers in a monopoly market, as well as under competition.
Similarly, we show that the profits of SaaS providers are higher when their applications
are energy-aware too.

2 Model

IaaS providers: each has an infinite number of physical servers at his disposal. Each
server is populated by VMs belonging to possibly different applications and the CPU
speed is split equally among the VMs. Let vi be the number of VMs used by application
i. The provider is able to freely scale, i.e., the server consolidation policy is such that
the number of active physical servers m scales in proportion to the number of VMs in
the infrastructure, i.e.,

P
i vi=m ¼ q, where the constant q is the consolidation degree.

If the CPU speed of a physical server is l then l=q is the CPU speed dedicated to each
VM running in the infrastructure.
We consider a two-part tariff specified by the parameters p0; p1 where p0 is the static
price (in €/hour) and p1 is the energy price (in €/watthour). Notice that a static pricing
scheme has p1 ¼ 0. The profit per unit of time (in €/hour) for the provider is

p0
P
i
vi þ p1

P
i
Pi við Þ � pe

P
i
Pi við Þ � c mð Þ ð1Þ

where Pi við Þ is the average power (in watts) consumed by the i-th application when it
uses vi VMs. pe is the price per watthour charged by the energy provider. c mð Þ is the
per hour maintenance cost involved in operating m servers; we assume it is linear, i.e.,
c mð Þ ¼ cm for some constant c[ 0. More specifically,

Pi við Þ ¼ p0m
viP
j vj

þ p1ki við Þ ¼ p0vi
q

þ p1ki við Þ

where p0 is the host’s base power consumption (while no application workload is
executed), p1 is the energy in watt hours consumed in the execution of each application
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request (or per CPU instruction) excluding base consumption, and ki við Þ is the
throughput of application i expressed e.g., in requests (or CPU instructions) per second.

PaaS providers: we assume they are not economic agents on their own; rather they
follow the strategies of IaaS providers. This is the case for example, when the PaaS
layer is offered by the same economic entity, which offers the IaaS. Thus, whenever we
refer to IaaS we mean the combination of IaaS/PaaS. In a more complete model, we
would have considered the case where the PaaS providers are separate economic
agents, which follow their own strategies.

User demand for application requests: each application i has a different throughput
demand (rate of instructions or requests to be executed at the VMs of this application)
kmaxi which decreases to 0 if the average processing delay of each instruction/request
becomes too high. In particular, we assume each request derives a benefit Ri � bidi kið Þ
from its execution, where Ri; bi are constants and di kið Þ ¼ 1= l

q � ki
vi

� �
is the average

processing delay based on an M/M/1 queueing model. According to this model, the
benefit decreases as response delay increases. If the delay becomes too great, the
benefit will become negative and requests will start balking at this point. Thus, either

Ri [ bidi k
max
i

� �
and ki við Þ ¼ kmaxi , or Ri ¼ bidi ki við Þð Þ, i.e., ki við Þ ¼ l

q � bi
Ri

� �
vi. More

compactly: ki við Þ ¼ min l
q � bi

Ri

� �
vi; k

max
i

n o
.

Applications: Consider application i employing vi VMs. The profit per unit of time for
the SaaS provider of this application is assumed to be given by riki við Þ�
p0vi � p1Pi við Þ, where p0; p1 are the parameters of the two-part tariff employed by the
IaaS provider, ki við Þ is the throughput of requests served by application i, and ri is the
revenue per completed request (e.g., in €/request).

The application decides how many VMs to buy from a particular IaaS provider
such that its profit is maximized. Observe that it will never use more than

kmaxi = l
q � bi

Ri

� �
VMs needed to attain the maximum demand, since additional VMs only

increase payments to the IaaS provider without a corresponding increase in application
revenues. Thus the profit maximization problem for the SaaS provider of the i-th
application is:

max riki vð Þ � p0v� p1Pi vð Þ
over 0� v� kmaxi = l

q � bi
Ri

� � ð2Þ

Since ki vð Þ;Pi vð Þ are linear functions of v in 0� v� kmaxi = l
q � bi

Ri

� �
, the optimal

number vi p0; p1ð Þ of VMs is either 0 or kmaxi = l
q � bi

Ri

� �
. It is nonzero whenever the slope

of the objective function in (3) is nonnegative, i.e.,

ri
l
q
� bi
Ri

� �
� p0 þ p1

p0
q
� p1

l
q
� bi
Ri

� �� 	
ð3Þ
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In this idealized model, the number of VMs v can take any real positive value.
Although this is done for simplicity, we note that a discrete model would not add
anything important to our understanding, as we are mainly interested in fundamental
properties of these systems. Apart from that, a continuous model is accurate for
applications using a large number of VMs.

In Sect. 3, we first analyse whether energy-awareness of IaaS/PaaS providers is
profitable for IaaS/PaaS and SaaS providers in the case where the latter are not
energy-aware in the sense that they do not take decisions (e.g., which tasks to schedule
on which VMs) on the basis of energy consumption. (Note however that they do get to
decide which IaaS/PaaS provider to use on the basis of total price charged; this depends
on whether the pricing scheme is energy-based or not). Section 4 considers whether
energy-awareness of SaaS providers is profitable for both themselves and IaaS/PaaS
providers.

3 Energy-Awareness of IaaS/PaaS Providers

3.1 Monopoly

Since the two-part tariff has two degrees of freedom while the static pricing scheme is
one-dimensional (since p1 ¼ 0), the maximum profit achieved by an IaaS/PaaS pro-
vider acting as a monopolist is never below its profits if a static pricing scheme is used
instead.

Actually, a two-part tariff yields strictly higher profits as the following simple
example shows. Consider the case of two applications with the parameters
pe; p0; p1; q; l; bi;Ri; ri satisfying

pe
p0
q
� p1

l
q
� b2
R2

� �� �
[ r2

l
q
� b2
R2

� �
[ r1

l
q
� b1
R1

� �
[ pe

p0
q
� p1

l
q
� b1
R1

� �� �

Let us compute the profits of a monopolist using the static pricing scheme (where
p1 ¼ 0) due to application 2:

p0v2 � c
v2
q
� pe p0

v2
q

þ p1v2
l
q
� b2
R2

� �� 	
� r2v2

l
q
� b2

R2

� �
� pe p0

v2
q

þ p1v2
l
q
� b2
R2

� �� 	

� r2v2
l
q
� b2
R2

� �
� pe p0

v2
q
� p1v2

l
q
� b2
R2

� �� 	

where the first inequality follows from (3) if v2 [ 0. (If v2 ¼ 0 then the profits due to
application 2 are obviously zero). By our selection of parameter values, the profits due
to 2 are strictly negative if v2 [ 0. Thus, a monopolist who uses static pricing clearly
would not want to serve application 2 since he will suffer losses.

Now if application 1 demands a positive number of VMs under static pricing,

condition 3ð Þ (with p1 ¼ 0) implies r1
l
q � b1

R1

� �
� p0 holds. But then r2

l
q � b2

R2

� �
[ p0

must also hold, i.e., application 2 also demands a strictly positive number of VMs.

Economic Implications of Energy-Aware Pricing in Clouds 135



Thus under the static pricing scheme, (3) implies that it is not possible to avoid
including application 2.

This does not happen under a two-part tariff with p0 ¼ 0; p1 [ pe, since then
p1 p0=q� p1 l=q� b2=R2ð Þð Þ[ r2 l=q� b2=R2ð Þ (i.e., application 2 is excluded) but
r1 l=q� b1=R1ð Þ[ pe p0=q� p1 l=q� b1=R1ð Þð Þ (i.e., application 1 is included) and
so strictly higher profits result.

As a numerical exposition, we evaluate the profits of a monopolistic provider given
by (1), under two scenarios: in the first the provider employs a two-part tariff, while in
the second it uses a static price. The parameter values are R1 ¼ R2 ¼ 20; r1 ¼ r2 ¼
1:5; q ¼ 10; pe ¼ 0:285; p0 ¼ 10; p1 ¼ 5; kmax1 ¼ kmax2 ¼ 50; l ¼ 50; c ¼ 0.

Figure 1(a) depicts the profits as a function of the maximum average request
response delay tolerated by the users of application 1 (normalized by the max tolerated
delay for application 2). The profits brought by the two-part tariff are always greater
than those brought by the static pricing scheme. They coincide only if the
quality-of-service characteristics of the two applications are the same. The greater the
diversity between the applications is, the greater the difference in their profits.

3.2 Competition

In this section we show that for an IaaS/PaaS provider, charging VM energy in addition
to a flat fee per VM, as done by the two-part tariff, is optimal under competition: at
equilibrium prices only this type of IaaS/PaaS providers offers the maximum possible
profits to SaaS providers without suffering losses (i.e., negative profits) himself.

Under ideal competition without entry costs, no IaaS provider is able to make
strictly positive profits because in that case he is left without demand. This is because
the demand is attracted by other providers, which choose to operate at a smaller albeit
nonzero profit margin by slightly reducing their prices. Thus at market equilibrium,
competitive IaaS/PaaS providers obtain zero profits and barely cover their costs. Since
we are interested in comparing the effect of the pricing scheme on competition, we will
compare IaaS providers under the same characterizing parameters (i.e. q; l; p0; p1)

Fig. 1. (a) IaaS provider profits in a monopoly – Using a two-part tariff incorporating energy
charges (solid curve), and a static pricing (dashed); (b) Comparison of payments by two
applications to IaaS providers as a function of application QoS diversity.
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except those concerning their pricing scheme. Further, we assume that all IaaS pro-
viders face the same maintenance and energy costs, i.e., the c; pe parameters are
common.

We say that the IaaS provider is competitive for applications of type i if he makes
zero profits from applications of this type, i.e., p0vi þ p1Pi við Þ ¼ c

q vi þ pePi við Þ for any
vi [ 0 with vi � kmaxi = l=q� bi=Rið Þ. (Since the profits from application i are linear in
vi, it suffices that the previous equality holds for a single vi for it to hold over the entire
range.) Observe that from application types for which an IaaS provider is competitive,
the latter is able to attract a nonzero demand. This is because any application of this
type pays exactly the minimum possible costs, as all IaaS providers have the same
characteristics (apart of their pricing scheme). Thus, if an IaaS/PaaS provider charges
prices p0 ¼ c=q, p1 ¼ pe, i.e., charging by the true factor cost he is facing his own, he
is competitive for any application irrespective of its type. This is obvious as the
equation defining competitiveness is trivially satisfied for any application. In this tariff,
the true energy price is passed onto the application, while the flat fee part covers the per
server maintenance costs.

In contrast, IaaS providers, which use static pricing, can only be competitive for a
single application type in general. This follows since p0vi ¼ vic=qþ pePi við Þ is pos-
sible only for p0 ¼ c=qþ pe p0=qþ p1 l=q� bi=Rið Þð Þ, using the definitions of
Pi við Þ; ki við Þ. Thus, the only static price which makes the IaaS provider competitive to
application i depends on the application type through bi=Ri. This means that the static
price used by IaaS providers not charging energy, targets competition for a narrow set
of applications. In order for these providers to attract more application types they need
to offer multiple statically priced plans so that applications can select the one who find
more profitable. This is essentially a pricing strategy which tries to emulate
energy-based pricing using application-level information (i.e., bi=Ri) which the IaaS
provider is difficult to obtain or guess. In contrast, true energy-based pricing which uses
application-independent prices is a more robust strategy by relying on industry-wide
factor costs.

As an exposition of the competition between IaaS providers and the effect of the
pricing scheme, we consider an example, which examines the profits of two applica-
tions as a function of their diversity. We assume the users of the applications do not
tolerate average request response delays above some value, which is specific to each
application. Figure 1 (b) depicts the payments per time unit incurred by each appli-
cation under two different pricing schemes: i) the static price scheme, which does not
take energy consumption into account, and ii) the two-part, which incorporates energy
consumption. The parameter values used are R1 ¼ R2 ¼ 20; r1 ¼ r2 ¼ 1:5; q ¼
10; pe ¼ 0:285; p0 ¼ 10; p1 ¼ 5; kmax1 ¼ kmax2 ¼ 50; l ¼ 50; c ¼ 0. The price parame-
ters of each scheme are chosen under the assumption of ideal competition, i.e., they are
chosen as described in the previous section. The horizontal axis represents the maxi-
mum tolerable delay by users of application 1 (normalized to that of application 2).

For stringent delay requirements, when max tolerable delay is less than 0.3,
application 1 does not at all use the provider with static pricing since the high costs
outweigh benefits. The latter hosts application 2 only, at a competitive price. When the
delay requirements of application 1 are not so stringent, the demand rises and

Economic Implications of Energy-Aware Pricing in Clouds 137



application 1 starts using the static provider, but at a cost which is not competitive:
application 1 payments exceed the ones offered by the provider employing a two-part
tariff. As applications become less diverse (i.e., max tolerable delay close to 1) the two
providers are equally attractive, although the provider offering the two-part tariff is
slightly more. For values of the max tolerable delay above 1, the less tolerable users
belong to application 2 now, and they bare most of the costs in both providers. Nev-
ertheless, the static provider continues not to be competitive as the payments resulting
for application 2 exceed those by the provider employing the two-part tariff.

In Fig. 2 the aggregate profits over all applications is depicted for the two-part tariff
and the static pricing scheme. The profits under static pricing may decrease if some
applications have stringent delay requirements.

4 Energy-Awareness of SaaS Providers

In this section, we analyse whether energy-awareness of SaaS providers is economi-
cally sensible. In order to make the effects of energy-awareness clearly visible, we
refine the model in Sect. 2 to allow for (i) physical hosts with different power efficiency,
(ii) requests with different energy consumption.

Such situations are quite common; in the sequel we consider the simplest possible
case with two different host types (with the one being more power efficient) and two
request types (with the one being more energy consuming).

4.1 Assumptions

Host power efficiency: The efficiency parameters of the two host types are given by
(Table 1):

For simplicity, both host types consume the same power while their CPU idles.
While active, type i consumes pi1 extra power where we assume type 1 is more efficient,
i.e., p11\p21.

Fig. 2. Comparison of SaaS provider profits under IaaS providers competition.
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VM scheduling: The fact that type 1 hosts are more power efficient has an implication
for the VM scheduling policy of the IaaS provider. Since the latter strives to have
minimal energy costs, more power efficient hosts are preferred to less efficient ones.
Thus, the VM scheduling will try to allocate type 1 hosts first to meet demand; type 2
hosts will be used only if it is not possible to meet demand only by utilizing type 1
hosts. Since the VM scheduler maintains a fixed number q of VMs per host, the
maximum number of VMs that can be carried by type 1 hosts is qH1. Thus if an
application employs v VMs, the number of these hosted in type 1 hosts is min v; qH1ð Þ
while max v� qH1; 0ð Þ are hosted in type 2 hosts. (This is under the assumption that
the VM scheduling algorithm is allowed to freely reallocate all VMs on the available
hosts.) Note that if there were an infinite number of hosts for both types, the VM
scheduling would never use type 2 hosts. Thus, we assume the number H1 of type 1
hosts is finite. As in Sect. 2, to simplify the analysis the number H2 of type 2 hosts is
assumed to be infinite.

Application request types: All requests are categorized in two types described by the
following parameters (Table 2):

We assume a unit rate of type 1 requests consumes w1 [ 1 times the one of type 2.
The precise power consumption depends on the host type the request is executed, so the
average power consumption is pi1w1 if executed on a type i host. Let the total request
rate be k vð Þ when the application employs v VMs, where we have dropped the sub-
script since we consider a single application. Then the power consumption (excluding
idle power) due to type 1 requests is h1k vð Þpi1w1 if all were executed on type i hosts. If
both host types are used, the average power consumption is given by a corresponding
linear combination.

Request scheduling by the application: Here we consider the implications in power
consumption due to the application being energy-aware or not. First we consider the
“legacy” case, where an application has no information about the power consumption

Table 1. Efficiency parameters of the two host types.

Host type Idle power consumption Active power consumption # of hosts

1 p0 p11 H1

2 p0 p21 H2 ¼ 1

Table 2. Request categorization.

Request type Relative power consumption
due to a unit rate of requests
(normalized to type 2)

Proportion of
total requests

Power consumption due
to a unit rate of requests

1 w1 [ 1 h1 pi1w1

2 w2 ¼ 1 h2 ¼ 1� h1 pi1w2
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of its components. In this case, the application cannot differentiate between the more
and less energy consuming request types. Moreover, it cannot have information about
the energy efficiency of its VMs. Thus, the requests are scheduled on VMs indepen-
dently of their type.

Now each VM receives requests of any type at rate k vð Þ=v, where v is the total
number of VMs. A proportion hj of those are type j, and so their power consumption is
pi1wj. Thus the power consumed by a VM (excluding the idle state) running on host

type i is pi1
k vð Þ
v h1w1 þ h2w2ð Þ. Considering the VM scheduling algorithm outlined

above, the power consumption P vð Þ of the entire “legacy” application, including power
consumption in the idle state, is:

P vð Þ ¼ p0v
q

þ ½p11min v; qH1ð Þþ p21max v� qH1; 0ð Þ� k vð Þ
v

X
j

hjwj ð4Þ

Let us now consider how an energy-aware application allocates requests on its
VMs. Since type 1 hosts are more power efficient and type 1 requests are more energy
consuming (as w1 [w2), an energy-minimizing scheduling policy ought to place type
1 requests on type 1 hosts and use type 2 hosts only if necessary or for serving (the less
consuming) type 2 requests. Under such a policy, the power consumption of the
energy-aware application is given by

P vð Þ ¼p0
v
q
þ k vð Þ

v
fmin h1v; qH1ð Þp11w1 þmax h1v� qH1; 0ð Þp21w1

þ min v; qH1ð Þ �min h1v; qH1ð Þ½ �p11w2 þmax v�max h1v; qH1ð Þ; 0ð Þp22w2g
ð5Þ

4.2 Monopoly

Let v p0; p1ð Þ be the optimal number of VMs requested by the application which is
obtained by solving the optimization problem (3), where we have dropped the subscript
since we have only one application. The IaaS/PaaS provider chooses prices p0; p1
which maximize his profits, i.e., he solves:

max p0v p0; p1ð Þþ p1P v p0; p1ð Þð Þ � c
v p0; p1ð Þ

q
� peP v p0; p1ð Þð Þ

over p0; p1 � 0

In Fig. 3 (a), we numerically solve the above problem and depict the maximum
profits for the monopolist as a function of the number of power efficient hosts H1. All
curves in Fig. 3 (a) were produced under the parameters: p0 ¼ 1; p11 ¼ 1; p21 ¼ 3;
w1 ¼ 3; w2 ¼ 1; h1 ¼ 0:5; q ¼ 0:5; l ¼ 1; kmax ¼ 50; b ¼ 1; R ¼ 2; r ¼ 1; c ¼ 0:1.
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The solid curve corresponds to the case where the application is energy aware, and
the dashed curve is for a “legacy” application. Energy awareness at the application
level increases profits for any choice of parameters. The relative increase is at most
10%, when the energy price of the energy provider is pe ¼ 0:05. For cheaper energy,
energy-awareness brings a smaller profit increase to the IaaS/PaaS provider.

For low numbers of type 1 hosts, the profits are almost identical as the majority of
VMs are hosted in type 2 hosts. As the number of type 1 hosts increases, the
energy-saving effect of the scheduling of requests performed by the application
becomes more significant. Beyond H1 ¼ 55 there is no profit difference as all requests
are served by type 1 hosts and request scheduling does not have any effect, since VM
scheduling makes sure only the power efficient hosts are utilized.

It is interesting to see where the profit increase is coming from: is it because
applications need to pay more or it is mostly due to a decrease in energy costs? For all
parameters in Fig. 3 (a) the applications’ payments are constant (and equal to 50), so
the difference in profits is due to energy savings. The magnitude of the savings seems
to be greater for higher energy costs (pe ¼ 0:05 case).

In Fig. 3 (b), we again compare profits but now as a function of the percentage of
energy consuming requests, i.e., the parameter h1 as it ranges from 0 to 1, for H1 ¼ 50.
Type 1 requests can be thought as being more CPU intensive (since they consume more
energy), while type 2 as more RAM intensive. Therefore, Fig. 3 (b) shows the effect of
the workload mix in profits.

All profits are decreasing in h1 as type 1 requests are more energy consuming.
Again, the profits with energy-aware applications are higher. The relative profit
increase due to energy-awareness is observed at approximately h1 � 73%, which
involves a mix of both request types.

Figure 4 (a) depicts IaaS/PaaS provider profits in a monopoly for energy-aware
(solid curves) and “legacy” (dashed) SaaS providers, as a function of how much more

Fig. 3. (a) IaaS/PaaS provider profits in the case of monopoly as a function of the number of
power efficient hosts; (b) IaaS/PaaS provider profits in a monopoly as a function of the workload
mix.
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energy consuming type 1 requests are relative to type 2, i.e., the w1 parameter. The
profit difference increases as the energy difference between the request types increases.
At w1 ¼ 10 the profit gain due to energy awareness is 20%.

In Fig. 4 (b), we show the profits as the function of the power consumption of
type-2 hosts, i.e., the parameter p21. As p21 increases, so type-2 hosts become less
efficient, the profit gain (for IaaS providers when hosting energy-aware with respect to
legacy SaaS applications) increases until a deflection point around p21 ¼ 5:6 where the
gain start to decrease. At this point, the type-2 hosts become too expensive so the
“legacy” application (which is hit most by energy costs) drops its demanded VMs such
that it ceases to use type-2 hosts. (This is why the profit of the “legacy” application
remains constant after p21 ¼ 5:6: the p11 parameter is constant and no type-2 hosts are
used.) On the other hand, the energy-aware application always satisfies its maximum
demand kmax. Of course, if p21 increases beyond the range shown in the figure, the
energy-aware application will lower its demand as well and meet the profit line of the
“legacy” application.

Given the attractive properties for the IaaS/PaaS provider that application level
energy awareness has, we conclude that he has the incentive of sharing some of the cost
involved for the applications to adopt energy-aware technologies. In particular, the
introduction of energy awareness at the application level can have important (up to
20%) gains in IaaS/PaaS provider profitability, and does not increase the payments
made by applications to IaaS compared to the “legacy” case. Additionally, the profit
gains are due to energy savings resulting from scheduling diverse requests to diverse
hosts, executed by the application. The more diverse the requests and hosts are the
more significant the effect of application-level scheduling becomes. Finally, when
either the requests consume similar energies, or the hosts have similar power
efficiencies, the additional optimization performed by application does not have a
significant effect.

Fig. 4. (a). IaaS/PaaS provider profits in a monopoly as a function of w1; (b) IaaS/PaaS provider
profits as a function of the power efficiency of type 2 hosts.

142 A. Dimakis et al.



4.3 Competition

When IaaS/PaaS providers compete with each other with no entry costs, they have zero
profit margins as explained in Sect. 3. Applications however have strictly positive
profits and we will see that their profits increase by being energy-aware. As the analysis
of the competitive case in Sect. 3 does not depend on the precise form of power
consumption function P vð Þ, the same results regarding equilibrium prices carry over to
the present case, i.e., the market prices are p0 ¼ c=q, p1 ¼ pe.

Given the market prices, an application solves problem (3) for p0 ¼ c=q, p1 ¼ pe to
obtain the maximum profits. We show that (4) is greater than (5) for any v, and so
energy-awareness increases application profits. Notice that one can move from the
legacy allocation of type 1 requests, where these are distributed equally among all VMs
(irrespective of the host they are running on), to the allocation produced by
energy-awareness, by shifting small loads of type 1 requests that reside on any VMs on
type 2 hosts to VMs on type 1 hosts. If we move a small load � then the change in the
total power is �p21�w1 þ p11�w1. To keep the load of each VM balanced, the previous
shift is complemented by another shift of size � in the reverse direction, of type 2
requests from the VM running on the type 1 host to the VM on the type 2 host. The
change in the power due to the reverse move is �p11�w2 þ p21�w2. The total power
difference is �p21�w1 þ p11�w1 � p11�w2 þ p21�w2 ¼ � w2 � w1ð Þ p21 � p11

� �
\0; since

w2 w1; p21

 �

p11. Thus, the total move yields a decreased power and so (4) is greater than
(5). We conclude that application level energy-awareness increases applications’
profits. To get a sense of the magnitude of the profit increase we numerically evaluate
profits.

In Fig. 5 (a), we show the application profits for energy-aware and “legacy”
applications. As expected by the previous argument, the profits of energy-aware
applications surpass those of “legacy”. (The parameters values were the same as those
in the previous section). The maximum gain (of about 11%) is obtained for high energy
costs, pe ¼ 0:05. The gain is marginal for low costs such as pe ¼ 0:01.

Fig. 5. (a) Profits of energy-aware (solid curve) and “legacy” applications (dashed) in
competitive markets for IaaS/PaaS; (b) Application profits as a function of energy consumption
of type-1 requests.
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In Fig. 5 (b), we show application’s profits as a function of energy consumption of type
1 requests. The profit gain becomes marginal for homogenous requests. Notice though that
there is a saturation effect for pe ¼ 0:05 around w1 ¼ 6:3: for too large values of w1 the
energy savings due to utilization of type 1 hosts are dominated by the high energy
consumption of type 1 requests on type 2 hosts. In this case, the number of type 1 hosts is
too small to completely avoid the high energy consumed by type 1 requests.

We observe that in competitive markets for IaaS/PaaS, energy aware applications
extract higher profits from energy-based scheduling of requests, and the profit gain is
higher if the request energy characteristics are more diverse. Thus, applications
themselves would want to adopt energy-based technologies because they become more
profitable if IaaS/PaaS charge according to energy consumption.

5 Conclusions

In this paper, we considered a mathematical model of applications and IaaS/PaaS
providers and showed that applications which adapt to energy-based information and
the proposed energy-based pricing schemes by appropriately scheduling requests to
VMs, extract higher profits compared to being non-adaptive. Although the model is a
gross simplification of reality, it is valuable in that it clearly shows the potential
economic benefits for applications to respond to appropriate pricing signals. Thus, it is
not only that applications become more power efficient once they utilize an
energy-aware framework (e.g., ASCETiC [5]), but they have an economic incentive to
utilize it. We saw that IaaS/PaaS providers are the likely first adopters of energy-aware
layers as it increases their profits even when the application providers are not
energy-aware. Even if the aforementioned analysis shows that if SaaS providers adopt
the energy-aware SaaS layer they will also see their profits increase, this does not mean
that they will adopt an energy-aware framework as they have no means of evaluating
the benefit of doing so. Our future work focuses on defining a more complete model,
considering the case where the PaaS providers are separate economic agents.
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